University of Nottingham
Department of Mechanical Engineering

MM2MS3 Mechanics of Solids 3
Exercise Sheet 2 — Asymmetrical Bending Solutions

1. Forthe section shown in Figure Q1, determine:

(a) The position of the Centroid, C

(b) 2" Moments of Area and Product Moment of Area about the x-y axes through C
(c) The Principal 2" Moments of Area

(d) The directions of the Principal Axes

All dimensions in mm

Fig Q1

[Ans: a) 14.7mm from bottom and left edges, b) I, = 131,257.96mm", I,, = 131,257.96mm" & I, = -

77,234.04mm", c) I,, = 208,491.1mm" & I = 54,023.92mm", d) 45° anti-clockwise from x-y axes]
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Solution 1

(a) Position of Centroid, C

5 |
e
'Y a i y
: |
o
50 i
| x
________ ____L___________‘*_____________ _____________’
C % y l
b . 6
B |

Total Area, A = (6x44), + (50%6), = 564mm*

Taking moments about AA:

_ (6X44x%28), + (50x6X%3),
y= c64 = 14.7mm

Similarly, taking moments about BB:

_ (44%6x%3), + (6X50%25),
X = ) = 14.7mm

(b) 2" Moments of Area and Product Moment of Area about the x-y axes through C
Therefore, using the Parallel Axis Theorem,

L, = (I, + Ab?), + (I, + Ab?),
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3

6x443 50x
=\ + 6x44x(28 — 14.7)% | +

50x6%(3 — 14.7)%?
12 + ( ) )

=~ I, = 131,257.96mm*

and,
L, = (I, + Aaz)a + (1, + Aaz)b
44%63 2 6x50° 2
=\ 44x6%(3 — 14.7)% | + + 6X50%(25 — 14.7)
sy, = 131,257.96mm*
Also,

Ly = (Iy + Aab)a + (Iy + Aab)b

= (0 + 6x44%x(3 — 14.7)x(28 — 14.7)) + (0 + 50x6x (25 — 14.7)X (3 — 14.7))

S Ay = —77,234.04mm*

(c) Principal Second Moments of Area
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Mohr’s Circle
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L, +1,
Centre,C = "2—y = 131,257.96mm*

Ly — Iyn\°
Radius, R = \/ ("Z—Y) + Ly, = 77,234.04mm*

Therefore, the Principal 2" Moments of Area are:

Ib=C+R

131,257.96 + 77,234.04 = 208,491.1mm*

and,

Ip = C— R =131,257.96 — 77,234.04 = 54,023.92mm*

(d) Directions of the Principal Axes

Also,

20 = —90°
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~ 0 = —45°

Therefore the Principal Axes are at 45° anti-clockwise from the x-y axes, as shown on the diagram below.

y
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2. Calculate (a) the Principal 2" Moments of Area and (b) the directions of the Principal Axes for the section
shown in Figure Q2.

e —————— === _
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v
All dimensions in mm 60
— 10 |+—
g
10
[ 2 R S .
0
Fig Q2

[Ans: a) I, = 367,810.05mm" & I = 44,967.75mm’, b) 6.97°]
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Solution 2

(a)

Position of Centroid, C
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Total Area, A = (20x10), + (10x40), + (30x10), = 900mm*

Taking moments about AA:

_ (20%x10x55), + (10x40%30), + (30x10x5),
y= 900 = 27.22mm

Similarly, taking moments about BB:

_ (10x20%20), + (40x10%x25), + (10x30x15),
X = 300 = 20.56mm
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2" Moments of Area and Product Moment of Area about the x-y axes through C

Therefore, using the Parallel Axis Theorem,

L, = (I, + Ab?), + (I, + Ab?),, + (I, + Ab?),

20x10° 5 10x40° )
= ot 20x10x(55 — 27.22)% | + + 10x40% (30 — 27.22)
30x103
5 +30x10x(5 — 27.22)?
= 363,055.56mm*
and,
Iy, = (I, + Aa®)_+ (I, + 4a?), + (I, + 4Aa?)_
10x20° 5 40x10° )
= ot 10x20x(20 — 20.56)% ) + + 40x10%(25 — 20.56)
10x303
+ 5 + 10%30x(15 — 20.56)?
= 49,722.24mm*
Also,

Ly = (Luy + Aab) _+ (Lyy + Aab), + (Lyy + Aab)_

= (0 +20x10x(20 — 20.56)x (55 — 27.22)) + (0 + 10x40% (25 — 20.56)x (30 — 27.22))
+ (0 4+ 30x10x(15 — 20.56)x(5 — 27.22))

= 38,888.88mm*
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Principal Second Moments of Area

Mohr’s Circle

Product Moment
(mm?)

A (le Ixy)

I \ 20 Ip

C 2" Moment
(mm?)

>
»

L, + 1y, 363,055.56 + 49,722.24
2 2

Centre,C = = 206,388.9mm

, Ly — Iyn? ) 363,055.56 — 49,722.24\°
Radius,R = (T) +Lpy® = ( z ) + 38,888.882 = 161,421.15mm

Therefore, the Principal 2" Moments of Area are:

Ip = C+ R =206,388.9 + 161,421.15 = 367,810.05mm*

and,

lo=C—R=2063889 —161,421.15 = 44,967.75mm*
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(b)
Directions of the Principal Axes
From the Moht’s Circle above:

oo _ 1y _ 3888888
S = R T 161421.15

8 =6.97°

Therefore the Principal Axes are at 6.97° (clockwise) from the x-y axes, as shown on the diagram below.

y
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3. A box section beam, 300mm wide, 450mm deep, with a uniform wall thickness of 25mm is subjected to a
uniform bending moment, M. The plane of bending is inclined at an angle of 30° to the longer principal axis
of the section. Determine the maximum permissible bending moment if the maximum stress in the beam is
not to exceed 120MPa.

[Ans: 334.54kNm]

Solution 3

Principal 2" Moments of Area

+
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All dimensions in mm

Due to 2 planes of symmetry in the section, it can be seen that the Principal (P-Q) Axes lie on the x-y axes,
i.e.,
6 =0°

where 8 is the angle between the x-y axes and the Principal (P-Q) Axes. Also,

= 944,791,666.67mm*

- bod,> bid;®\ _ 300x450°  250x400°
P\ 12 12 ) = 12 12
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and,

= 491,666,666.67mm*

b,d,®> b;d;? 450%x3003  400x2503
IQ = Iy = —_ = —_

12 12 12 12
y

Bending Moment is applied at 30° to the longer Principal Axis (i.e. the Q-axis) as shown below,

y

+
|
i
|
|
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| Q

C 30° x

Resolve applied Bending Moment onto Principal Axes

Mp

Therefore,
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Mp = Mcosf = Mcos30
and,
My = —Msinfg = —Msin30

(note negative sign as M, is in the negative y direction)

Calculation of position of Neutral Axis

_ MpQ MgyP
- Ip Iy

At the Neutral Axis, g, = 0, therefore,

MpQ M,P
Ir I

=0

MpQ _ MgP

I I

L Q_ Mgl
TP Myl

Therefore, a, the angle between the Neutral Axis and the Principal Axes can be defined as,

_ _1(0)_t L (Mole _, _1(—Msin30><944,791,666.67)_ 4797
CEER R T \Mply) T "Mcos30x491,666,666.67 )

Therefore the Neutral Axis is at 47.97° (clockwise) from the Principal Axes as shown below,
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Maximum Tensile Stress in the section

It can be seen that the maximum (tensile) Bending Stress will be at position A, as shown below,

+

y

Q Position A

e

| " M

Neutral

«— 300 —}— Axis

As above,
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MpQ MyP
op = -

I I

Therefore, the co-ordinates of point A on the P-Q axes are required. In this case, these are the same as the x-y
co-ordinates and are:

P = 150mm
and,

Q = 225mm

These P-Q co-ordinates for position A can now be substituted into the equation for bending stress to give:

_ MpQ MyP Mcos30x225 —Msin30x150

Ip Iy "~ 944,791,666.67 491,666,666.67

Op

sop = M(2.062x1077 + 1.525%1077) = 3.587x107 " XM

As the maximum stress in the beam is not to exceed 120MPa:

120 = 3.587x107"xM

~ M = 33.454Nmm = 334.54kNm
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4. A 50mm by 30mm by 5mm angle is used as a cantilever of length 500mm, with the 30mm leg horizontal
and uppermost. A vertical load of 1000N is applied at the free end. Determine (a) the position of the
neutral axis and (b) the maximum tensile and compressive bending stresses.

[Ans: a) 86.79°, b) 201.18MPa & -94.38MPa]

Solution 4

All dimensions in mm
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(a)

Position of Centroid, C

Total Area,A = (30%X5), + (5x45), = 375mm*
Taking moments about AA:
_ (30x5x%47.5), + (5%45x%x22.5),
y= = 32.5mm
375
Similarly, taking moments about BB:
_ (5%30x%x15), + (45%5x%x2.5),
X = = 7.5mm

375

2" Moments of Area and Product Moment of Area about the x-y axes through C
Therefore, using the Parallel Axis Theorem,

L, = (I, + Ab?), + (I, + Ab?),
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30x53 5x453
=\ + 30x5x(47.5 —32.5)% | + 5 + 5%45x(22.5 — 32.5)?
= 94,531.25mm*
and,
L, = (I, + Aaz)a + (1, + Aaz)b
5x303 45x53
=\ +5%30%x(15 —7.5)? | + + 45%x5x%(2.5 — 7.5)?
= 25,781.25mm*
Also,

Leyr = (Iey + Aab) + (Iy + Aab),

= (0 +30x5%(15 — 7.5)x(47.5 — 32.5)) + (0 + 45X5x (2.5 — 7.5)x(22.5 — 32.5))

= 28,125mm*

Principal Second Moments of Area

Mohr’s Circle

A (le Ixy)

Product Moment
(mm?)

2" Moment
(mm?)

v

B (Iyl _Ixy)
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I, +1, 94,531.25 + 25,781.25
2 2

_ Ly — Iyn\? ) 94,531.25 — 25,781.25\°
Radius, R = (T) + Ly = ( - ) + 28,1257 = 44,414.6mm

Centre,C =

= 60,156.25mm

Therefore, the Principal 2" Moments of Area are:
Ip =C+R =60,156.25 + 44,414.6 = 104,570.85mm*

and,

Ip =C—R=160,156.25 — 44,414.6 = 15,741.65mm*

Directions of the Principal Axes

From the Mohr’s circle above:

g by _ 28125
SeY = R T 44,4146
%0 =19.65°

Therefore the Principal Axes are at 19.65° clockwise from the x-y axes, as shown on the diagram below.
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As this is a 500mm cantilever beam with a vertical load of 1000N applied to the end, it is the equivalent of
having a 500,000Nmm (M = PXL) Bending Moment applied about the x-axis as shown below,

Therefore,

Mp = Mcosf = 500,000c0s19.65 = 470,882.18Nmm
and,

Mgy = Msinf = 500,000sin19.65 = 168,136.77Nmm

Calculation of position of Neutral Axis
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_ MpQ MyP
- Ip Iy

Op

At the Neutral Axis, g, = 0, therefore,

MpQ MoP
Ip Iy,

0

MpQ _ MgP

I I

L Q_ Mgl
TP Myl

Therefore, a, the angle between the Neutral Axis and the Principal Axes can be defined as,

_ -1(9)—t Ly (Molp) _ _1(168,136.77x104,570.85)_67140
=R R T \Mer,) T \470,882.18x15,741.65 ) O

Therefore the Neutral Axis is at 67.14° (anti-clockwise) from the Principal Axes as shown below,
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The Neutral Axis is therefore at (19.65° - 67.14° =) -47.49° (anti-clockwise) from the x-axis.
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(b)

Maximum Tensile and Compressive Stresses in the section

By observation, it is considered that the maximum tensile and compressive stresses in the section will be at
positions A and B, respectively, as shown below,

S
™~

Position A —_,

—————— e ________________}

b ———»

19.65° M x
A !
a |
s |
7 I
. I
_p")// :
\» |

& | P

| |
|
I
I

' *— Pposition B

As above,

_ MpQ MgyP
- Ip Iy

Therefore, the co-ordinates of point A on the P-Q axes are required. These are calculated as:
P = xcosf — ysinf
and,

Q = xsinf + ycos6

Where for point A, x =-7.5mm and y = 17.5mm. Therefore,
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P = —7.5¢c0519.65 — 17.55in19.65 = —12.95mm

and,

Q = —7.55in19.65 + 17.5¢0519.65 = 13.96mm

These P-Q co-ordinates for position A can now be substituted into the equation for bending stress to give:

MpQ MoP 470,882.18x13.96 168,136.77x—12.95
Ip I,  104,570.85 15,741.65

Opa =

“ ops = 201.18MPa

And for point B, x =-2.5mm and y =-32.5mm. Therefore,

P = —2.5c0519.65 + 32.55in19.65 = 8.58mm

and,

Q = —2.55in19.65 — 32.5¢0519.65 = —31.45mm

These P-Q co-ordinates for position B can now be substituted into the equation for bending stress to give:

MpQ MoyP 470,882.18x—-31.45 168,136.77x8.58

= - = —141.62 — 91.64
A 104,570.85 15,741.65

« opg = —233.26MPa




University of Nottingham
Department of Mechanical Engineering

MM2MS3 Mechanics of Solids 3
Exercise Sheet 2 — Asymmetrical Bending Solutions

5. Calculate (a) the position of the Neutral Axis and (b) the maximum tensile stress for the section shown in
Figure Q5 when a Bending Moment of 225Nm is applied about the x-axis in the sense shown.

75

[Ans: a) 42.82° (anti-clockwise) from the x-y axes, b) 14.22MPa]
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Solution 5

(a)

Position of Centroid, C

(on
[€ [N | J PR
PR~

“

Total Area, A = (75%4), + (4x97), + (25%4), = 788mm*

Taking moments about AA:

_ (75%4x103), + (4x97x52.5), + (25%4%2),
Y= 788

= 65.32mm

Similarly, taking moments about BB:

_ (4x75%37.5), + (97%x4x2), + (4%25%12.5),
X = 88 = 16.85mm
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2" Moments of Area and Product Moment of Area about the x-y axes through C

Therefore, using the Parallel Axis Theorem,

L, = (I, + Ab?), + (I, + Ab?),, + (I, + Ab?),

3

4x97
+ 75x4x (103 — 65.32)2> + ( +4x97%x(52.5 — 65.32)2>

3 75%x43
T\ 12

25x43
+ 5 + 25%x4x(2 — 65.32)?

= 1,195,403.35mm*
and,
L, = (I, + Aaz)a + (1, + Aaz)b + (1, + Aaz)c

3

B <4><753

97 X%
+ 4x75%(37.5 — 16.85)2> + ( +97x4x(2 — 16.85)2>

4x253
+ 5 + 4x25x%(12.5 — 16.85)?

=361,732.39mm*

Also,
Liyr = (Iuy + Aab)_ + (Ipy + Aab), + (Iy + Aab)
= (0 + 75x4%(37.5 — 16.85)x (103 — 65.32)) + (0 + 4x97%(2 — 16.85)x(52.5 — 65.32))
+(0 + 25x4x(12.5 — 16.85)x(2 — 65.32))

= 334,838.08mm*

Principal 2" Moments of Area



University of Nottingham
Department of Mechanical Engineering

MM2MS3 Mechanics of Solids 3
Exercise Sheet 2 — Asymmetrical Bending Solutions

Mohr’s Circle

s
()
£
S+
S E
*g k3 B (I, —1,,)
T
e
o
26
IQ \ Ip R
C 2" Moment
R (mm?)
Al 1)

Ly + 1y, 1,195,403.35 + 361,732.39

Centre,C = > > = 778,567.87mm
] Ly — 1y 2 ) 1,195,403.35 — 361,732.39\°
Radius,R = (T) Ly = ( 5 ) + 334,838.082
= 534,666.59mm

Therefore, the Principal 2" Moments of Area are:
Ip=C+R =778567.87 + 534,666.59 = 1,313,234.45mm*
and,

lo =C—R=778567.87 — 534,666.59 = 243,901.27mm*

Directions of the Principal Axes

From the Mohr’s circle above:

oo _ 1y _ 334838.08
S = R T 534.666.59
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~ 8 =19.39°

Therefore the Principal Axes are at 19.39° clockwise from the x-y axes, as shown on the diagram below.

i
Q/

Resolve applied bending moment onto Principal Axes

Therefore,
Mp = Mcos6 = 225c0s19.39 = 212.24Nm = 212.24x103Nmm
and,

Mgy = Msinf = 225s5in19.39 = 74.7Nm = 74.7x103Nmm

Calculation of position of Neutral Axis

_ MpQ MgyP
- Ip Iy
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At the Neutral Axis, g, = 0, therefore,

MpQ MoP _
Ip Iy,
MpQ  M,P
A

L Q_ Mgl
TP Myl

Therefore, a, the angle between the Neutral Axis and the Principal Axes can be defined as,

_. _1(0)_t L (Mole) _ 74.7%103%1,313,234.45 _ eo1ge
=R R T \Mpr,) T \21224x10%%x243,901.27) ~ O

Therefore the Neutral Axis is at 62.18° (anti-clockwise) from the Principal Axes as shown below,

y

———————

The Neutral Axis is therefore at (19.82° — 62.64°) -42.82° (anti-clockwise) from the x-axis.
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(b)
Maximum Tensile Stress in the section

By observation, it is considered that the maximum tensile stress will be at position A, as shown below,

*
y
@
Position A !
~ M,
o ’
N
N
L 1
As above,

MpQ MyP

op = - —

Ip Iy

Therefore, the co-ordinates of point A on the P-Q axes are required. These are calculated as:
P = xcosf — ysinf
and,

Q = xsinf + ycos6

Where for point A, x =-16.85mm and y = 39.68mm. Therefore,
P = —16.85c0519.39 — 39.685in19.39 = —29.06mm
and,

Q = —16.855in19.39 + 39.68c0519.39 = 31.84mm
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These P-Q co-ordinates for position A can now be substituted into the equation for bending stress to give:

_ MpQ MoP  21224x103x31.84 74.7x10%x—29.06
Ip I,  1,313,234.45 243,901.27

Op

- o = 14.39MPa




