

University of Nottingham

MMME2045TeachingLaboratory onLead-Tin Alloy

Phase Diagrams, Thermal Analysis, Cooling curves

Sanliang Ling Email: Sanliang.Ling@nottingham.ac.uk

Lead-Tin Phase diagram

University of Nottingham

UK | CHINA | MALAYSIA

Lead-Tin Phase diagram

University of

• Melting of Lead Tin Alloys

- Risks
 - Spills
 - Burns
 - Fire
 - Fume

• Loud Extract

Table 1. The eleven compositions of lead-tin, Pb-Sn, to be explored with cooling curves for the class. The percentage is expressed as wt%

pure Pb	Pb – 10% Sn	Pb - 20% Sn
Pb - 30% Sn	Pb - 40% Sn	Pb - 50% Sn
Pb - 60% Sn	Pb - 70% Sn	Pb - 80% Sn
Pb - 90% Sn	Pure Sn	

(1)Heat the crucible, to 350°C;

(2)Natural cooling, record the temperature every 5 seconds;

(3)Until 150 °C;

- Writing apparatus
 - Pen
 - Pencil, eraser
 - -Ruler
- PPE MUST BE WORN AT ALL TIMES IN THE LAB
 - -Lab Coat
 - -Safety Glasses
 - -Safety Shoes
- Lab sheets

- Each lab session lasts for 1 hour and 30 minutes
- Lab sessions start at <u>09:00</u>, <u>10:30</u>, <u>13:00</u> and <u>14:30</u>, respectively (be ready before your session starts, and don't be late!)
- 2~3 students per group
- Collect your data from the lab, make sure you're happy with the raw data before you leave the lab
- Complete the three lab tasks (see slide 15 for details), and bring your lab report to the feedback session in the week after
- Feedback sessions start at <u>09:15</u>, <u>10:45</u>, <u>13:15</u> and <u>14:45</u>, respectively (don't be late!)

- check your personal timetable for time slots
- <u>change to PPE</u> and meet in Room
 220 on arrival
- lab in Room 218 (PPE required)
- feedback in Room 227 (PPE not required in the feedback session)

You can leave your personal belongings either in Room 220 or in the lockers (in A floor)

University of

- Offices and communal areas
 - Transport of good and apparatus
- Research and Teaching Activities
 - Mechanical
 - Electrical
 - Thermal
 - Chemical
 - Biological
 - Gases
 - Radiation

• EVERYONE IS RESPONSIBLE FOR SAFE WORKING: notes from HSE

- Take care of your own health and safety and that of people who may be affected by what you do (or do not do)
- Co-operate with others on health and safety, and not interfere with, or misuse, anything provided for your health, safety or welfare
- Follow the training you have received when using any work items your employer has given you.

- Alarm Test
 - Wolfson Thursday 8:15
- No fire drill is scheduled
- Follow the demonstrators and Exit via the nearest route
- Do not use lift in case of a fire
- Convene at assembly 8 for Wolfson

Assembly Point - Wolfson Nottingham

University of

UK | CHINA | MALAYSIA

1421 Wolfson Building - B Floor Plan

- PPE
 - -Safety Glasses
 - Lab Coat
 - -Safety Shoes
 - -Hair tied back, no loose items
 - -Long Trousers
- No Headphones in lab areas
- No food or drink in lab areas

- To plot **cooling curve** of a sample randomly assigned to you (you will need to run the experiment and record the temperature/time data)
- To re-create the **phase diagram** using the data of all the 11 samples provided to you (see slide 19)
- Sketch the microstructure you may expect to see if you looked down a microscope for each of the 11 compositions at room temperature assuming they had all been equilibrium cooled from the melt
- The above 3 tasks are individual work, not group activities.

- Feedbacks will be provided to you (in small groups) in the week after.
- You must attend both the lab and feedback sessions.
- Completion of the three tasks will help you to improve your understanding of phase diagrams.
- Assessment of the laboratory will take the form of questions included in the 3rd ROGO test which must be taken along with questions on Block C.
- If you miss either the lab or the feedback session without an approved EC, you will get 0 mark in the 5 questions on phase diagram in ROGO #3.
- Timetable is managed by the Student Services. If you need to re-arrange either of your lab or feedback session, you should consider submitting an EC application.

• All graphs should be **neat** and **tidy**

 Plotting can be done manually (on coordinate worksheet) or electronically (e.g. using Excel)

• Remember to label your drawings: axes, symbols, units, error bars, sample number, sample composition, date, author, etc

The main error in this experiment is the measurement of temperature, and we assume the error bar for temperature is ±3 °C

Pb-Sn Phase Diagram

University of

					i b on system
Sample No.	%Pb	%Sn	Temp1 / °C	Temp2 / °C	T(°C)
1	100	0	327	-	
2	90	10	296	288	300-
3	80	20	275	184	L (liquid)
4	70	30	254	183	$L + \alpha$
5	60	40	235	183	$200 \alpha 183^{\circ} L+\beta \beta$
6	50	50	213	183	18.3 61.9 97.8
7	40	60	-	183	150
8	30	70	188	183	100-/
9	20	80	203	183	$\alpha + \beta$
10	10	90	216	183	
11	0	100	232	-	0 20 60 80 10
On your phase diagram, please label the single and two phase region appropriately. Co, wt% Sn					

Pb-Sn system

On your phase diagram, please label the single and two phase region appropriately. Please also label the **three critical compositions**.

Microstructure

Cooling Curve

 To plot cooling curve of a sample randomly assigned to you (you will need to extract the temperature/time data from the video by yourself)

Time (second)

Cooling Curve

Sample No.	%Pb	%Sn	Temp1/°C	Temp2 / °C
1	100	0	327	-
2	90	10	296	288
3	80	20	275	184
4	70	30	254	183
5	60	40	235	183
6	50	50	213	183
7	40	60	-	183
8	30	70	188	183
9	20	80	203	183
10	10	90	216	183
11	0	100	232	-

Cooling Curve

Sample No.	%Pb	%Sn	Temp1/°C	Temp2 / °C
1	100	0	327	-
2	90	10	296	288
3	80	20	275	184
4	70	30	254	183
5	60	40	235	183
6	50	50	213	183
7	40	60	-	183
8	30	70	188	183
9	20	80	203	183
10	10	90	216	183
11	0	100	232	-

Time (second)

Pb-Sn Phase Diagram

Universitu of

On your phase diagram, please label the single and two phase region appropriately. Please also label the three critical compositions.

University of

University of

Nottingham

Callister and Rethwisch, Materials Science and Engineering, 10th Edition.

University of

Nottingham

Composition (wt % Sn) Callister and Rethwisch, Materials Science and Engineering, 10th Edition.

University of

Nottingham