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Introduction

Representation of Control Systems
Laplace Transforms

Modelling of simple components
Non-linearity and linearisation
Block Diagram manipulation

Introduction to transient and steady state response
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Electro-mechanical position control system
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Improving Transient and Steady State performance
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The stability of feedback systems



Learning Outcomes

* At the end of the lecture, you should:

— Understand system modelling using Laplace
Transforms

— Know the difference between Open Loop and Closed
Loop Feedback Control

— Understand how to derive transfer functions using
Block Diagram Manipulation or Algebraic Methods

— Understand the concept of Root Locus and Stability

— Be able to apply the Routh-Hurwitz Stability Criteria to
determine if a system will be stable



Open Loop Control

https://www.youtube.com/watch?v=TOM-1Gal-7k




Closed Loop Control

The key is feedback!

https://www.youtube.com/watch?v=TJgUiZgX5rE




Systems and block diagrams

e Open-Loop system

Input Plant or Output
process ]

* Closed-Loop (feedback) system

Input ~ Plant and ,Output
(desired result) controller (controlled)




Representation of control systems

e What comes out = What goes in x transfer function.
e The block diagram for an element is drawn as follows:

X; Xout

Xout(s) = G(s)x X, (s)

 Multiple elements: Geared Motor

eout




Representation of control systems

e Multiple elements: Geared Motor

eout

 Motor —armature resistance, efficiency, inertia
e Gearbox — Gear Ratio, efficiency, inertia, viscous drag



Representation of control systems

 Multiple elements: Geared Motor

Vin +

* Jew = K (V — Kyw)
— V' is the input voltage
— J. is the effective inertia of the system

— K, is the combined gear ratio and armature characteristics, relating
input voltage to acceleration

— K, is the combined back EMF of the motor and viscous drag of the
gearbox and motor

e Laplace Transform: J,sQ(s) = Kl(V(S) — KZ.Q(S))



System Modelling

* Transfer function:

JesQ(s) = K1 (V(s) — K2Q(5))
J.sQ(s) + K1 K,Q(s) = K,V (s)

Note: Angular velocity is related to input voltage —
output torque would need a different TF.

Load on output shaft — need to add to transfer
function (separate input)



Feedback Control

e How the system knows:
— Where you currently are
— Where you need to go

CAR JOURNEYS THEN
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e When output can be directly
compared to input:

Xin

+ ~

e More commonly:

Xin
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CAR JOURNEYS NOW

SIRI, ARE WE NEARLY

FROM YOUR DESTINATION +++

> Xout

http://www.billingtoons.com/
2016/01/are-we-nearly-there-
yet.html



Response to common inputs

e Switching the system on:

— Unit step: X(s) = %
— Ramp function: x(t) = at X(s) = iz

S

* For our geared motor: response to step
voltage input:

—_ p— Kl l_ Kl
-Q(S) — H(S)V(S) o ]es+K1K2xS_S(]eS+K1K2)




Response to common inputs

e Response to step voltage input:

1 1 —at N 1

RS

K1 _ KiK;
W) =P T




Response of geared motor to unit step
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Steady State Error

e Difference between input and output at
t =

— Correspondstos = 0
E(s)=X(s)—Y(s) = (1 — G(S))X(s)
e Final Value Theorem:
eeg = L]l_)rglo e(t) = }Sl_r)r(% SE(S)=£i_r)% 5(1 — G(S))X(S)
For Rotary systems (continuously moving) —
velocity lag is equivalent to steady state error



Response of geared motor to unit step
Input

12 -

10 +

Angle turned

Velocity lag




Improving System response

e PID Controller

— Adds Proportional, Integrator and Derivative
terms

— Reduces steady state error and response lag
— May cause Oscillation



Part 2 — Block Diagram Manipulation

* As an example, think about a car transmission:

Engine revs

Gearbox

Axle differential Wheel rotation

0(s) —>

G1(s)

—»  G,(5) » 2 (S)

IVIIVIZDYN bynamics: Lontrol Lecture 3 & 4 - 15



Block Diagram Manipulation: Basic Rules

a) Elements in Series: Multiplication

X() —» G(9)

X(s) —»

Gy 4 Gz G1Xi
A—» G,(5) A—» Y(s)
G, G, » 1(s)

Y(s) = G1(s)G(S)X(s)

MM2DYN Dynamics: Control Lecture 3 & 4
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Block Diagram Manipulation: Basic Rules

b) Elements in Parallel

G.X
—p G () d
+ vyt s)
X(S) > GZ(S)
| G G
G,X

Split: X is unaffected. Summing junction follows signs given.
After summing junction:

Y (s) = (G1(s) + G2(s) — G3(s)) X X(5)

X(s) s)

MM2DYN Dynamics: Control Lecture 3 & 4
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Intermediate Signals

* In a complex block diagram, it can help to
calculate the value of an intermediate signal
as you work your way through the system.

A(s) B(s)
X(s)

_.Q_ G1(s) Yt \__| G2(s) i_» G3(s) Y(s)
+

- H1(s)

H2(s)




Intermediate Signals

A(s) = (X(s) —H2(s)Y(s)) X G1(s)
B(s) = (A(s) — H1(s)B(s)) X G2(s)
Y(s) = (B(s)) X G3(s)

e Methodical substitution:

Y(s) Y(s)
re) (A(s) _ H1(s) E) X G2(s)
V(s)(1+H1(s)G2(s)) _ A(5)G2(s)

G3
Y(s)(1+ H1(s)G2(s))

G3

= (X(s) —H2(s)Y(s))G1(s)G2(s)



Intermediate Signals

Y(s)(1+ H1(s)G2(s)
+ H2(s)G1(s)G2(s)G3(s))
= (X(s))G1(s)G2(s)G3(s)



Intermediate Signals

Y(s)(1+ H1(s)G2(s)
+ H2(s)G1(s)G2(s)G3(s))
= (X(s))G1(s)G2(s)G3(s)

Y(s) G1G2G3

X(s) 1+ H1G2+ G1G2G3H?2



Non-linearisation

 Most of the time, we are modelling responses

around an operating point

flow

“nominal”
operating point

«—> pressure drop
operating
range

Blue line shows operating range

Normally composed of a tangent
equal to that found at the
operating point:
findy =mx+b
for the blue line

MM2DYN Dynamics: Control Lecture 3 & 4
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Transient response — Third and higher
order systems

 Generalised transfer function for the system:
Q(s)
P(s)

Q(s)
(s—p1)(s—Dps)...(s—pPN)

G(s) =

G(s) =

A.C.Ritchie MM2DYN Dynamics: Control Lecture 7 & 8
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Transient Response — Higher order
systems

e Values for which Q(s) is zero are zeros of the
transfer function

* Values for which P(s)is zero (i.e.
G (s)becomes infinite) are the poles:
— D1,P2, ..., Py for an Nt order system

— These poles are either real (singular) or complex
(pairs)
S =0,0rs =0, T w,

A.C.Ritchie MM2DYN Dynamics: Control Lecture 7 & 8 27



Transient Response — Higher order
systems

If the input is a unit step: X;(s) = %

Then:
NR C
1 r A
Xo(s =—+z |
0(s) s Lis—o _1(s—ac)z+a)§

NR N¢
xo(t) =1+ z B,.e°rt + z B.e%tsin(w,t)
r=1 c=1
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Unstable




Routh-Hurwitz Stability Criteria

P(s) =ags"+a;s" t+a,s" %+ +a,=0
Routh Hurwitz criteria for stability:

i) Necessary: All coefficients ag, a4, a,, ..., a,; are non-
zero and have the same sign.

— i.e.if there is a change of sign in the
denominator, the system will be unstable. No
need to proceed to condition ii).

— However, it is possible for the system to be
unstable without a change of sign ...

A.C.Ritchie MM2DYN Dynamics: Control Lecture 7 & 8 30



Routh-Hurwitz Stability Criteria

P(s) =ags"+a;s" t+a,s" %+ +a,=0
Routh Hurwitz criteria for stability:

i) Necessary: All coefficients ag, a4, a,, ..., a,; are non-
zero and have the same sign.

ii) Necessary and sufficient: if i) is satisfied, then the
Hurwitz determinants D4, D,, ..., D,, must be
positive.

— This very quickly becomes laborious ...
— Better to use a Routh Array

A.C.Ritchie MM2DYN Dynamics: Control Lecture 7 & 8 31



Routh-Hurwitz Stability Criteria (Routh
Array)

s™ a, a, Ay Ag
n—1
S aq as ac a-
S b, b, b,
sn3 Cq Cy C3
SO
b . a1a2 - a0a3 b . a1a4 - a0a5 . a1a6 - a0a7
1 a, 2 ay 3 a,
b1a3 - a1b2 b1a5 - a1b3
— C2 —
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Routh-Hurwitz Stability Criteria

Using the Routh Array:

e |f there is a change of sign in the first column, there
is a root on the real, positive side of the s-plane. For
every change of sign, there is another positive root.

 Thus, for the system to be stable, all values in the
first column must be positive.

— There is an issue if there is a zero in the first column, or
there is a complete row of zeros so that the array cannot

be completed.
— Beyond the scope of MM2DYN!

A.C.Ritchie MM2DYN Dynamics: Control Lecture 7 & 8
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Example 1

The characteristic equation of a system is:

253 +4s?+4s+12=0

Is the system stable or unstable? If it is unstable, how many roots lie
in the right half of the s-plane?

Given that the coefficients of the characteristic equation are non-
zero and have the same sign, the stability of the system must be
investigated using criterion (2):

Provided that condition (1) is satisfied, then the necessary and
sufficient condition that no root of equation (1) lies on the right
hand side of the s-plane is that the Hurwitz determinants of the
polynomial must be positive.

A.C.Ritchie MM2DYN Dynamics: Control Lecture 7 & 8
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