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Lecture objectives gins o o

* Revise kinematics and dynamics of rigid bodies

« Solve several exam style problems
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Rigid Body definition

« System of particles

« Distances between particles
remain unchanged

« Deformations are neglected

Particle — Rigid body — System of rigid bodies
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Rigid Body motion: Pure translation ..

« Line segments maintain orientation

* Points move on “parallel” trajectories

At any instant of time:

Va=Vg = Vc =...

ap=38ag =3ac =...




Rigid Body motion

: Rotation about fixed axi J
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Kinematics of rigid body governed by:
o(t) angle of rotation
6(t)=w(®)  angular velocity
6(t) =a(t)  angular acceleration

Each point performs circular motion.
E.g. for point C:

v, = wd velocity magnitude
ap = w?d

acceleration components
al =ad
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Velocity relations in planar motion -

Given: velocity at A & angular velocity

Known: Vg =V + Vg (1)

Relative motion at B Is circular around A:

1) magnitude: Vvpa=wAB
2) direction: perpendicular to AB
3) sense: governed by the angular velocity
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Acceleration relations in planar motion = - -

Given: acceleration at A, angular velocity
& angular acceleration

Known: ag=a,+ag, =as+ag"+as!

Relative motion at B Is circular around A:

1) magnitudes: ak, =w?AB a4, = a AB

2) directions & senses:

« Normal component always has direction towards the reference point.
« Tangential component is perpendicular to AB with direction defined by a.
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w, = 100 rad/s = const.

BC =240 mm AB =80 mm
6 =450 BG =120 mm

Geometry:

siny siné@ _ 1363
AB _ BCc 'Y T

AC? = AB* + BC? — 2AB.BC cos 121.4°

AC = 0.2897m
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Velocity Analysis

T+.

AB =380 mm
BC =240 mm
6 = 459
y =13.63°
A V
7 —¢
/
Vo
vg = w; AB =100 X% 0.08 =8m/s ~+cB b
Ve =Vp t+ Vcp
VCB = Wy BC ES 024‘(1)2
Vg cos© 8cos45°
0 =vgcosBO + v gcosy = W, = —m = T 024c0s13.63° —24.25rad/s
Ve = —Vp COS 0+ Vee Siny = Ve = —7.028 m/S
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Acceleration Analysis

ag = al) = w2 AB = 1002 X 0.08 = 800 m/s>

ac = ag +agg +acg

apg = w3.BC = 24.25%2 X 0.24 = 141.1 m/s?
atg = a,.BC = 0.24q,,

\*: accos13.63° = 800 cos58.63° + 141.1+ 0 — ac = 573.7 m/s?
T*: 0= -—800cos45° + 141.1sin13.63° — 0.24 o, cos 13.63° - a, = —2283 rad/s?.
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Degrees of Freedom

The degrees of freedom of a mechanical system in motion are the independent coordinates
needed to uniquely specify the position of the system.

The number of degrees of freedom Is the smallest number of different coordinates in a
mechanical system that must be fixed in order to prevent the system from moving.

Quiz:
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Xa(0)% + Ya(1)? = L2
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3d.o.f.

Xa(t)
Ya(t)

o(t)

1d.o.f.
o(t)
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Degrees of Freedom

B .1 d.o.f.x(t) or 6(t)

Unconstrained Particle: 2 E.0o.M.

Unconstrained R.B.: 3 E.o0.M.

Constrained Systems: some E.o0.M. used for calculating reaction forces.

13
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Fundamental Laws of Rigid Body Motion .

F =mag (1)

E : resultant of the external forces
a; . acceleration of mass centre

MMME1028 result: M; =J;a (2)

Mg : resultant of the applied moments about the axis of rotation
Jg : mass moment of inertia about the axis of rotation
a . angular acceleration of the rigid body

14
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Fundamental Laws of Rigid Body Motion .

Equations of motion E

—)+: ZFx == mGaG’x
+. —

\t\'l': ZMG :]GC(

D’Alembert’s principle

g —»*: IF, — Eeme = 3F —mgag, =0
i 1. ZF, — F"¢"™ = 3F, —mgag, = 0

f\"‘: ZMG _ Minertia — ZMG _]Ga =0

15
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Exam question 2021/22

FIGURE Q1 shows a rigid bar AB, of length L, that slides down an incline. At the instant
shown end A is sliding along a horizontal plane and end B is sliding along an inclined
plane (f = 60°).

(a) How many degrees of freedom does the system have at the instant shown? [1]

(b) Find the angle a at the moment when ends A and B have equal speed. [4]

1 DOF

FIGURE Q1

16
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Exam question 2021/22

» AB: v, cos(a) = vgcos(2ABO)

When vy = vp:
cos(a) = cos(£ABO)
So: oa = 2£ABO

Finally, from the triangle:
a+ £ABO + 120° = 180°
2o+ 120° = 180°
a = 30°

17
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Rigid body dynamics problem

A cord is wrapped around a homogeneous disk of mass m=15 kg. The cord is pulled
upwards with a force T=180 N as shown below.

Using d’Alembert’s principle, determine:
(a) The translational acceleration of the centre of the disk, i
(b) The angular acceleration of the disk,
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Rigid body dynamics problem

A cord is wrapped around a homogeneous disk of mass m=15kg. The cord is pulled upwards with a
force T=180N.

r=0.om
Using d’Alembert’s principle, determine:
(a) The translational acceleration of the centre of the disk, 2 2
(b) The angular acceleration of the disk, Je = 2 mrs = 1.875 kgm
FBD for the disk: T=180 N

Inertial ma, downwards, thus actual a, upwards

Inertial Jca counterclock, thus actual a clock




The University of

!‘t Nottingham

Rigid body dynamics problem

EOMs for the disk: r=0.5m

1 2 2
Jc = Emr = 1.875 kgm

T=180 N

Inertial ma, downwards, thus actual a, upwards

Inertial Jca counterclock, thus actual a clock
2F=0: may,=0-a,=0

T+2F=0: T —may, —mg =0 - a, = 2.19m/s"

(*EM=0: J.a —Tr = 0 - a = 48rad /s>
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Rigid body dynamics problem

The 500-kg concrete culvert has a mean radius of 0.5 m. If the
truck has an acceleration of 3 m/s?, determine the culvert’s
angular acceleration. Assume that the culvert does not slip on
the truck bed, and neglect its thickness.

21
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Rigid body dynamics problem

Kinematics

dcg C -

ac _
A — point of contact between the

culvert and the truck.
_ _ 2
aA - atruck - 3 m/S

22
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Rigid body dynamics problem

FBD for the culvert: D'Alambert principle
(introduces inertia forces and moments):

a . ]a
¢ ma
ﬁ C
Ffriction Ffriction
N
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Rigid body dynamics problem

Moments about A:

~ O 2=

Ja — (mac)rculv =0

Kinematics: ar = ay — arq.yw
Ffriction

Ja —m(ap — arey) ey = 0

2 _
C((] + mrculv) — MapTcuw = 0

MaaTculv _ 500 x 3 x 0.5

a = = 3 rad/s?
J+mrZ,, 250 /

J =mr2,, = 500 x (0.5)% = 125 kg x m?

ac = a4 — ATpyp, = 3 —3 %X 0.5 = 1.5 m/s?
24
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