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The body and the axle can move separately, so the model has 
2 degrees-of-freedom (2 independent possible motions)

We need 2 coordinates to describe the motion 

– axle displacement and body displacement

MULTI-DEGREE-OF-FREEDOM SYSTEMS

Caravan body
(sprung mass)

Road springs

Wheels, axle, etc.
(unsprung mass)

Tyres

Road

Model of a single-axle caravan and its suspension

m2

m1

k2

k1
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System has 2 natural frequencies, each with a characteristic
pattern of displacement, called a MODE SHAPE

Definition of Mode Shape

Characteristic deflection pattern for a structure when 

it vibrates at one of its natural frequencies

We will study 2 classes of structures that have more than one 
mode of vibration

Multi-degree-of-freedom systems which have discrete 
masses and springs

Shafts and beams which have distributed mass and 
stiffness

In both cases, the aim will be to calculate

1. The natural frequencies of the system

2. The corresponding mode shapes
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Example 1:  Demonstration System (2 Degrees of Freedom) 

STEP 2:  Free-body Diagrams

m2

m1

k2

k1

x2

x1

(i) Remove the springs from 
the masses

(ii) Mark the chosen positive 
directions for motion

(iii) For positive displacements, 
write down the expressions 
for the forces and add them 
to the diagram to show their 
positive direction

11 xk

Force in spring k2 ?
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Force in spring k2 ?

k2

x2

x1

The expression for the force in a spring is 
Spring force =  Stiffness x  Change of length

What is the change of length of the spring?

Is the spring in tension or compression? ( )212 xxk −

( )212 xxk −

If both ends of the spring move down, the 
net change of length is the difference in 
displacements

That is ( )21 xx −

Is the spring in tension or compression?

The force in the spring is ( )212 xxk −

( )21 xx −If                is positive, the spring is in compression
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Force in spring k2 ?

k 2

x2

x1

The expression for the force in a spring is 
Spring force =  Stiffness x  Change of length

An alternative expression for the net change 
of length is

( )12 xx −

Is the spring in tension or compression?

So the force in the spring is ( )122 xxk −

( )12 xx −If                is positive, the spring is in TENSION

( )122 xxk −

( )122 xxk −

What is the change of length of the spring?

Is the spring in tension or compression?
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Force in spring k2 ?

k 2

x2

x1

The expression for the force in a spring is 
Spring force =  Stiffness x  Change of length

( )122 xxk −

( )122 xxk −

k 2

x2

x1

( )212 xxk −

( )212 xxk −

The two are 
exactly equivalent

What is the change of length of the spring?

Is the spring in tension or compression?
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Example 1:  Demonstration System (2 Degrees of Freedom) 

STEP 2:  Free-body Diagrams

m2 x2

m1 x1

11 xk

( )212 xxk −

( )212 xxk −

Completed free 

body diagrams
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or

STEP 3:  Equations of motion

m2

m1

x2

x1

11 xk

( )212 xxk −

x2

x1 11 xk− ( )212 xxk −− 11 xm =

( )212 xxk −+ 22 xm =

(1a)

(1b)

22 xk−( ) 121 xkk ++11 xm 

22 xm 

0=

22 xk+ 0=12 xk−

In matrix form (& remembering the general formulation 𝑀 ሷ𝑧 + 𝐾𝑧 = 0)           


















2

1

2

1

0

0

x

x

m

m






















−

−+
+

2

1

22

221

x

x

kk

kkk









=
0

0
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In matrix form


















2

1

2

1

0

0

x

x

m

m






















−

−+
+

2

1

22

221

x

x

kk

kkk









=
0

0

or            =   x   K   +   x    M 0

As with single-degree-of-freedom systems, we can check for errors 
in the equations at this stage. 

In particular,

(1) the terms in the leading diagonals of [M] and [K] are always 

positive

(2) the off-diagonal terms may be positive or negative

(3) [M] and [K] are often symmetric about the leading diagonal 
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Solution to obtain natural frequencies and mode shapes

22 Xk−( ) 121 Xkk ++
11

2ω Xm−

22

2ω Xm−

0=

22 Xk+ 0=12 Xk−

For free vibration of the system at one of its natural frequencies, the 
motion of each mass will be sinusoidal.  

Use as substitutions,                               and 

Substituting into (1) and cancelling the common factor  cos wt

( ) tXtx ωcos11 = ( ) tXtx ωcos22 =

In matrix form

(2a)

(2b)



















−−

−−+

2

1

2

2

22

21

2

21

ω

ω

X

X

mkk

kmkk









=
0

0

tXx ωcosω 1

2

1 −= tXx ωcosω 2

2

2 −=So that

(1a) =>

(1b) =>
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(2a)

(2b)







=




















−−

−−+

0

0

ω

ω

2

1

2

2

22

21

2

21

X

X

mkk

kmkk

or

    0    X Z =

   ( )   0ω2     X  M     K =−

     M     K    Z ω
2−=

(3)

or

where

   ( )   0λ     X  B     A =−

Equation (3) is an eigenvalue problem; normally presented in 
maths books as

The eigenvalues give the natural frequencies and the 
eigenvectors give the corresponding mode shapes
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For a non-trivial solution of equation (3)   0  =  det Z

( )( ) 0ωω 21

2

21221

4

21 =+++− kkkkmkmmm

Equation (4) is called the Frequency Equation, and you want to solve 

for ω.

Solving involves a standard quadratic equation

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0

Where 𝑥 = 𝜔2, 𝐴 = 𝑚2𝑚2 , 𝐵 = 𝑚1𝑘2 +𝑚2 𝑘1 + 𝑘2 , and 𝐶 = 𝑘1𝑘2

It will therefore have two roots ,               and               , where        

and        are the two natural frequencies of the system

2
1ωnx = 1ωn

2
2ωnx =

2ωn

(4)

Multiplying out the determinant gives

Obtaining the Natural Frequencies

From Wikipedia for a 2x2 matrix… 
𝑎 𝑏
𝑐 𝑑

=ad-cb

where 𝑎 = 𝑘1 + 𝑘2 −𝜔2𝑚1 , 𝑏 = −𝑘2 , 𝑐 = −𝑘2 , and 𝑑 = 𝑘2 − 𝜔2𝑚2
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This will define the relative movement of the masses, which 
is what we mean by the “Mode Shape”. I.e. it will tell us how 
much X1 moves if X2 moves a certain amount, or visa versa.

(2a) and (2b) are a pair of homogeneous equations, so we cannot 

find unique solutions for X1 and X2 separately

To find the corresponding mode shapes, we will substitute the 

frequency (ω) that we are interested in back into equations (2a) 

and (2b) to get the relationship between X1 and X2

Obtaining the Mode Shapes

One way to solve this is to give one value an amplitude of UNITY
and then find the amplitude of the other relative to this

(2a)

(2b)



















−−

−−+

2

1

2

2

22

21

2

21

ω

ω

X

X

mkk

kmkk









=
0

0
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Let  X2 = 1.  Equation (2b) gives

Give one value an amplitude of unity and then find the 
amplitude of the other relative to this

( ) 01ω 2

2

212 =−+− mkXk

(2a)

(2b)



















−−

−−+

2

1

2

2

22

21

2

21

ω

ω

X

X

mkk

kmkk









=
0

0























 −

=








0.1

ω

2

2

2

2

2

1 k

mk

X

X (5)

The vector 








2

1

X

X
is the required Mode Shape expression



What is reasonable to expect on the exam?

• In the exam you are expected to be able to 

❖ Form the generalized matrices ([Z]{X}={0}) for any
DOF system

❖ Solve for values of ω and {X} up to 2 DOF by hand 

❖ You are also expected to be able to sketch basic mode 
shapes given boundary conditions, without solving for 
values.

• I do not expect that you will solve by hand for numerical 
values of ω and {X} above 2DOF. But you should be aware 

of the techniques involved as future modules may expect 
you to do this.

❖ These days though most people use Matlab or similar 
programs to solve more complex systems. But if you can 
not do the first step above then you have no hope of 
even utilizing those.

15
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Example 1:  Demonstration System

m2

m1

k2

k1

x2

x1

(2a)

(2b)



















−−

−−+

2

1

2

2

22

21

2

21

ω

ω

X

X

mkk

kmkk









=
0

0

    0    X Z =or

  0    det =ZRoots of the Frequency Equation

give the natural frequencies

Equation (2b) gives the mode shape as

(5)























 −

=








0.1

ω

2

2

2

2

2

1 k

mk

X

X

Objective is to find the natural frequencies and 
mode shapes of the system
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Numerical example m1 = m2 = 2 kg    k1 = k2 = 200 N/m 

Mode Shapes

Substituting into (4) and solving gives = 38.1  s-2

and = 261.8  s-2

Natural Frequencies

2
1ωn

2
2ωn

Hence, = 6.18 rad/s = 0.98 Hz

and = 16.18 rad/s = 2.58 Hz 

1ωn

2ωn









=








0.1

618.0

2

1

X

X
Mode #1 Put = 38.1 s-2 into (5) to give

2
1ωn







−

=








0.1

618.1

2

1

X

X
Mode #2 Put = 261.8 s-2 into (5) to give

2
2ωn

m 2

m 1

k2

k1

x 2

x 1
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Mode Shape for Mode #1

X2 = 1.0

X1 = 0.618

X

X2 = 1.0

X1 = 0.618









=








0.1

618.0

2

1

X

X

Vibration
in phase
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Mode Shape for Mode #2

X2 = 1.0

X

X1 = -1.618

X2 = 1.0

X1 = -1.618







−

=








0.1

618.1

2

1

X

X

NODE
Point of zero 
displacement

Vibration 180º
out of phase

0
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Example 2 2D vehicle model

(coupled bounce and pitch)

STEP 1  Assumptions used to develop the dynamic model 

1. There is no roll motion - pitch and vertical translation only 

2. The body is rigid, with mass, m, and moment of inertia, IG

3. The tyres are very stiff so that the axles do not move

4. kA and kB are the combined stiffnesses for the front and 

rear springs respectively

5. No shock absorbers (dampers)
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AB

G

A

ab

kAkB

Equilibrium 
position

G

B

STEP 1  Dynamic mass-spring model 

Centre of mass
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This suggests xG and q would be good choices

Selection of Coordinates

We could use xG (displacement of G) together with q (pitch angle)

or we could use the displacements of A and B, xA and xB

Q Does it matter which pair we use ?

A NO - provided the equations of motion are right 

Q What equations of motion will we have ?

A 1.  vertical translation
we will need the absolute acceleration of the centre of mass

2.  angular motion about G (there is no fixed axis on AB)      
we will need the angular acceleration of AB
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STEP 2 Free Body Diagram

G

B

A

Equilibrium position

xG

q

ab

xB

xAkA xA

kB xB

For small q, increases in spring lengths are

θGA axx −=

θGB bxx +=
(1)}

xG
q
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STEP 3 Equations of motion

G
B

A

q

ab

kA xA

kB xB

xG

G

q

xG ( ) ( ) GGBGA θθ xmbxkaxk =+−−−

( ) ( ) GGGBGA θ.θ.θ Ibbxkaaxk =+−−+
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( ) ( ) GGBGA θθ xmbxkaxk =+−−−

( ) ( ) GGGBGA θ.θ.θ Ibbxkaaxk =+−−+

( ) ( ) 0θθ B

2

A

2

GABG =++−+ kbkaxkakbI 

In matrix form









=

















+−

−+
+

















0

0

θθ0

0 G

B

2

A

2

AB

ABBAG

G

x

kbkakakb

kakbkkx

I

m





( ) ( ) 0θABGBAG =−+++ kakbxkkxm 

Re-arrange

Check leading 
diagonals & 
symmetry
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AB

G

xG

q

Example 2 2D vehicle model

(coupled bounce and pitch)

Equations of motion in matrix form









=

















+−

−+
+

















0

0

θθ0

0 G

B

2

A

2

AB

ABBAG

G

x

kbkakakb

kakbkkx

I

m




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Natural Frequencies and Mode Shapes

For a solution, EITHER put ( ) tXtx ωcosGG = ( ) tt ωcosθ =and









=


















−+−

−−+

0

0

ω

ω G

2

GB

2

A

2

AB

AB

2

BA
X

Ikbkakakb

kakbmkk

Both methods lead to

OR write      M     K    Z 2ω−=

 
















 0

0G
  =  

X
 Z

to give

(2a)

(2b)

To find the Natural Frequencies, solve   0  =  det Z
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(2a) is

Let    = 1 rad

(2a)

(2b)

To find the Mode Shapes, take (2a) or (2b)

( ) ( ) 0ω ABG

2

BA =−+−+ kakbXmkk

Substituting each natural frequency into (3) will give the 
corresponding mode shape

( ) ( )






 −+−

=








 0.1

ω2

BABAG mkkkbkaX
Hence (3)









=


















−+−

−−+

0

0

ω

ω G

2

GB

2

A

2

AB

AB

2

BA X

Ikbkakakb

kakbmkk
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Natural Frequencies

Numerical Example

m = 900 kg IG = 1000 kgm2

kA = 25 kN/m kB = 10 kN/m

a = 1 m b = 2 m

DATA
ab

kAkB

G

Substituting into the Frequency Equation   0  =  det Z

0
100010401025105

1059001035
2333

323

=
−+−

−−

ω

ω

or 0
655

50.935
2

2

=
−−

−−

ω

ω
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0225093.50.9 24 =+− ωωExpanding gives

Roots = 37.8  s-2 and = 66.0  s-22
1ωn

2
2ωn

Hence, = 0.98 Hz and = 1.29 Hz
1ωn 2ωn
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( ) ( )






 −+−

=








 0.1

ω2

BABAG mkkkbkaX

Mode Shapes

(3)

Substituting for 
2
1ωn

Mode #1

From (1)









=








+

−
=









+

−
=









10.7

10.4

1210.5

1110.5

G

G

B

A

bX

aX

X

X

To visualise the mode shape, is more convenient








B

A

X

X

rad

m









=








 0.1

10.5GX

Normalising









=








0.1

58.0

B

A

X

X
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Mode #1









=








0.1

58.0

B

A

X

X

G

B A

XB = 1.0

XA = 0.6

Equilibrium 
position

X
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Mode #2

XB = 1.0

XA = - 0.67

G

B A

X

or







−

=








0.1

67.0

B

A

X

X

rad

m







−

=








 0.1

205.0GX

NODE
Point of zero 
displacement
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Torsional Systems Main Drive Shaft of the V2500 Jet Engine

Main shaft

Torsional stiffness k

Fan assembly

Moment of Inertia I 1

Turbine assembly

Moment of Inertia  I 2

Front bearing Centre bearing Rear bearing
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STEP 1  Dynamic mass-spring model 

I2k
I1

Fan 
Assembly

Turbine 
Assembly
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STEP 2  Free body diagrams 

I2k

I1
( )21 θθ −k

q1

q2

( )21 θθ −k

q1

(i) Remove shaft

(ii) Add rotational coordinates

(iii) Add torque reactions

Twist in the shaft?

Torque direction?
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STEP 3  Equations of motion 

I2

I1

( )21 θθ −k

q2

q1

( ) 1121 θθθ Ik =−−

( ) 2221 θθθ Ik =−+

0θθθ 2111 =−+ kkI 

0θθθ 2122 =+− kkI 
or









=

















−

−
+












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Check leading 
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I2k
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Equations of motion
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Substitute ( ) tt ωcosθ 11 = ( ) tt ωcosθ 22 =









=











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






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0

0

ω

ω

2

1

2

2

2

1

Ikk

kIk (1a)

(1b)

and

The Frequency Equation for this example is

or     0     Z =

To find the Natural Frequencies, solve   0    det =Z

( ) 0ωω 2

21

4

21 =+− IIkII

Roots and0ω2
1 =n

( )

21

212
2ω

II

IIk
n

+
=
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Using (1b) and putting  2 = 1

To find the Mode Shapes, substitute roots into (1a) or (1b)

( )

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 −

=

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


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
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Mode #1 has !?

Q What is implied by vibration at zero frequency?

0ω 1 =n

From (2) or









=












1

1

2

1

21 =

A Continuous rotation occurs with NO TWISTING of the shaft

The zero frequency, combined with the mode shape, describe a 
rigid body mode

ANY structure that is capable of moving without deformation (this is 
true of any structure not connected to ground) WILL have one (or 

more) rigid body modes with wn = 0.

It follows that the frequency equation will not contain a constant 
term.  Since you can tell in advance that this should be the case, it’s a 
useful check that the frequency equation is correct.

( ) ( ) ttt == 21 θθ where Ω is the shaft speedThat is

( ) 0ωω 2

21

4

21 =+− IIkII
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Mode #2

From (2)







−

=

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






0.1

12

2

1 II( )

21
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2ω
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+
=

NODE
Point of zero 
displacement

 Fan Turbine

1

2
1

I

I
−=

0.12 =

This torsional vibration is superimposed 
on the continuous rotation of the shaft
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