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Elastic Instability (Buckling)
Introduction

For many structural problems, it is reasonable to assume that the system is in stable equilibrium. However, not all
structural arrangements are stable. For example, consider a one-meter long stick with the cross-sectional area of a pencil.
If this stick were stood on its end, the axial stress would be small, but the stick could easily topple over sideways. This
simple example demonstrates that in some configurations, stability considerations can be primary.

This section is concerned with the stability of struts. Struts are compression members with cross-sectional dimensions
which are small compared to the length, i.e., they are slender. If a circular rod of, say, 5mm diameter, which has its ends
machined flat and perpendicular to the axis, were made 10mm long to act as a column, there would not be a problem of
instability and it could carry considerable force. However, if the same rod were made a meter long, the rod would
become laterally unstable at a much smaller applied force and could collapse.

Buckling also occurs in many other situations with compressive forces. Examples include thin sheets which have no
problem carrying tensile loads and vacuum tanks, as well as submarine hulls. Thin-walled tubes can wrinkle like paper
when subjected to torque.



Buckling
Examples



Elastic Instability (Buckling) Methods
Learning Outcomes

1. Know the meanings of and the differences between stable, unstable and neutral equilibria (knowledge);

2. Be able to apply Macaulay’s method for determining beam deflection in situations with axial loading (application);

3. Be able to determine the buckling loads for ideal struts (application);

4. Be able to include the interaction of yield behaviour with buckling and how to represent this interaction graphically

(knowledge/application).
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The Stability of Equilibrium

Some examples were given in the introduction slide:
• One-meter long stick with the cross-sectional area of a pencil. If this stick were stood on its end, the axial stress would

be small, but the stick could easily topple over sideways.
• Circular rod of, say, 5 mm diameter, which has its ends machined flat and perpendicular to the axis, were made 10mm

long to act as a column, there would not be a problem of instability and it could carry considerable force. However, if
the same rod were made a meter long, the rod would become laterally unstable at a much smaller applied force and
could collapse.

Assume this pin 
is frictionless
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Struts
Hinged-Hinged End Conditions

Consider an initially straight strut with its ends free to rotate around frictionless pins. The strut is now considered to be
perturbed, from its initially straight position.
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Taking moments about the section position in order to determine
an expression for the bending moment, 𝑀:

𝑀 = 𝑃𝑦

Substituting this into the 2nd order differential equation of the 
elastic line (see Deflection of Beams notes) :

𝐸𝐼
d!𝑦
d𝑥! + 𝑃𝑦 = 0

∴
d!𝑦
d𝑥! +

𝑃
𝐸𝐼 𝑦 = 0

𝑃
𝐸𝐼 = α!Let:

∴
d!𝑦
d𝑥! + α

!𝑦 = 0

𝑦 = 𝐴sin𝛼𝑥 + 𝐵cos𝛼𝑥

Struts
Hinged-Hinged End Conditions



𝑦 = 𝐴sin𝛼𝑥 + 𝐵cos𝛼𝑥

In order to determine values for A and B we need 2 boundary 
conditions as follows:

𝑥 = 0, 𝑦 = 0

𝑥 = 𝐿, 𝑦 = 0

∴ 𝐵 = 0 𝐴sin 𝛼𝐿 = 0and

Trivial solution:

𝐴 = 0

(for an undeflected strut)

Non-trivial solution:

sin 𝛼𝐿 = 0

𝛼𝐿 = 𝑛𝜋

Where 𝑛 = 1, 2, …

∴ 𝛼!𝐿! = 𝑛!𝜋!

Recalling that: 
𝑃
𝐸𝐼
= α!

∴
𝑃
𝐸𝐼 𝐿

! = 𝑛!𝜋!

∴ 𝑃 =
𝑛!𝜋!𝐸𝐼
L!

Struts
Hinged-Hinged End Conditions



∴ 𝑃 =
𝑛!𝜋!𝐸𝐼
L!n = 0 gives the 

trivial solution:

n = 1 gives the Euler 
Buckling load 

MODE 1
∴ 𝑃" =

𝜋!𝐸𝐼
L!

∴ 𝑃 = 0
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Struts
Fixed-Free End Conditions

Consider an initially straight strut with one end built-in (fixed) and the other end free (unconstrained). The strut is now
considered to be perturbed, from its initially straight position.
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Taking moments about the section position in order to determine
an expression for the bending moment, 𝑀:

𝑀 = 𝑃𝑦

Substituting this into the 2nd order differential equation of the 
elastic line (see Deflection of Beams notes) :

𝐸𝐼
d!𝑦
d𝑥! + 𝑃𝑦 = 0

∴
d!𝑦
d𝑥! +

𝑃
𝐸𝐼 𝑦 = 0

𝑃
𝐸𝐼 = α!Let:

∴
d!𝑦
d𝑥! + α

!𝑦 = 0
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𝑦 = 𝐴sin𝛼𝑥 + 𝐵cos𝛼𝑥

In order to determine values for A and B we need 2 boundary 
conditions as follows:

𝑥 = 0, 𝑦 = 0

𝑥 = 𝐿,
𝑑𝑦
𝑑𝑥 = 0

∴ 𝐵 = 0 𝐴𝛼cos 𝛼𝐿 = 0and

Trivial solution:

𝐴 = 0

(for an undeflected strut)

Non-trivial solution:

cos 𝛼𝐿 = 0

𝛼𝐿 =
𝑛𝜋
2

Where 𝑛 = 1, 2, …

∴ 𝛼!𝐿! =
𝑛!𝜋!

4

Recalling that: 
𝑃
𝐸𝐼 = α!

∴
𝑃
𝐸𝐼 𝐿

! =
𝑛!𝜋!

4

∴ 𝑃" =
𝜋!𝐸𝐼
4L!

The smallest, non-trivial, value of 𝑃 occurs when n = 1:

Struts
Fixed-Free End Conditions
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𝑑𝑦
𝑑𝑥 = 𝐴𝛼cos𝛼𝑥 − 𝐵𝛼cos𝛼𝑥



Consider an initially straight strut that is built-in (fixed) at both ends. The strut is now considered to be perturbed, from its
initially straight position.

Struts
Fixed-Fixed End Conditions
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Taking moments about the section position in order to determine
an expression for the bending moment, 𝑀:

𝑀 = 𝑀# − 𝑃𝑦

Substituting this into the 2nd order differential equation of the 
elastic line (see Deflection of Beams notes) :

𝐸𝐼
d!𝑦
d𝑥! − 𝑃𝑦 = −𝑀#

∴
d!𝑦
d𝑥! −

𝑃
𝐸𝐼 𝑦 = −

𝑀#

𝐸𝐼

𝑃
𝐸𝐼 = α!Let:

∴
d!𝑦
d𝑥! − α

!𝑦 = −
𝑀#

𝐸𝐼

𝑦 = 𝐴sin𝛼𝑥 + 𝐵cos𝛼𝑥 −
𝑀#

𝐸𝐼
1
𝛼!

Struts
Fixed-Fixed End Conditions



In this case, we have 4 boundary conditions:

𝑥 = 0, 𝑦 = 0 𝑥 = 0,
𝑑𝑦
𝑑𝑥 = 0

∴ 𝐵 =
𝑀#

𝐸𝐼
1
𝛼!

∴ 𝐴 = 0

Struts
Fixed-Fixed End Conditions

𝑦 = 𝐴sin𝛼𝑥 + 𝐵cos𝛼𝑥 −
𝑀#

𝐸𝐼
1
𝛼!

𝑑𝑦
𝑑𝑥 = 𝐴𝛼cos 𝛼𝑥 − 𝐵𝛼sin 𝛼𝑥

𝑥 = 𝐿, 𝑦 = 0 𝑥 = 𝐿,
𝑑𝑦
𝑑𝑥 = 0

∴ cos 𝛼𝐿 = 1 ∴ sin 𝛼𝐿 = 0

𝛼𝐿 = nπ

where n is even where n is odd or even

∴ 𝑦 = 𝐵 cos
2π
𝐿 𝑥 − 1 𝑃" =

4π!𝐸𝐼
𝐿!and



Consider an initially straight strut with one end built-in (fixed) and pinned at the other end free (free to rotate around
frictionless pins). The strut is now considered to be perturbed, from its initially straight position.

Struts
Hinged-Fixed End Conditions

This case differs from the previous examples in that a transverse force, R, shown in the figure, is necessary to create this
mode of deformation.



FBD

Taking moments about the section position in order to determine
an expression for the bending moment, 𝑀:

𝑀 = 𝑅𝑥 − 𝑃𝑦

Substituting this into the 2nd order differential equation of the 
elastic line (see Deflection of Beams notes) :

𝐸𝐼
d!𝑦
d𝑥!

+ 𝑃𝑦 = 𝑅𝑥

∴
d!𝑦
d𝑥! +

𝑃
𝐸𝐼 𝑦 =

𝑅𝑥
𝐸𝐼

𝑃
𝐸𝐼 = α!Let:

∴
d!𝑦
d𝑥! + α

!𝑦 =
𝑅𝑥
𝐸𝐼

Struts
Hinged-Fixed End Conditions

y
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d!𝑦
d𝑥! + α

!𝑦 =
𝑅𝑥
𝐸𝐼

Struts
Hinged-Fixed End Conditions

y

Solving this case requires this use of a particular integral (as
described in the notes) to yield:

𝑥 = 0, 𝑦 = 0

𝑥 = 𝐿, 𝑦 = 0

and the application of the following boundary conditions:

𝑦 = 𝐴sin𝛼𝑥 + 𝐵cos𝛼𝑥 +
𝑅
𝑃 𝑥

𝑥 = 𝐿,
𝑑𝑦
𝑑𝑥 = 0

gives: 𝑃" =
2.045π!𝐸𝐼

𝐿!



Struts
Summary

General Formula: 

∴ 𝑃" =
𝜋!𝐸𝐼
𝐿$%%!
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