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2 Linear ODEs with constant coefficients

Introduction

This part of the module is concerned with solution techniques for linear
ordinary differential equations (ODEs).

These equations arise naturally in the description of physical,
chemical and biological systems.

The aim of the module is to familiarise you with basic solution
techniques to these equations to enable you to study problems
arising in engineering.

There is hardly any subject in science or engineering that does not
involve differential equations, so these are extremely important.
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2.1 Definitions

Dependent and independent variables
The full solution to a differential equation, or DE, expresses the dependent
variables in terms of the independent variables. So for example in

d2y
dx2 + 2

dy
dx

+ y = 1, (1)

y is the dependent variable, x is the independent variable and the solution

y(x) = Ae−x + Bxe−x + 1

expresses y (the dependent variable) in terms of x (the independent va-
riable).
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If a DE has more than one independent variable, it is called a partial
differential equation (PDE).

An example of a PDE is

∂2ϕ

∂x2 +
∂2ϕ

∂y2 = 0,

where ϕ is the dependent variable, and x and y the independent variables.
The solution ϕ(x , y) is a function of two variables.

If a DE has only one independent variable, for example (1), it is
called an ordinary differential equation (ODE).

We will study PDEs later in the module: In this section, we solve
ODEs.
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Order
The order of a differential equation (DE) is that of the highest order
derivative appearing in the equation. So for example

d4y
dx4 −

d2y
dx2 = sin x (2)

is a fourth order ODE.

In general, an nth order ODE can be written as

F (x , y(x), y ′(x), · · · , y (n)(x)) = 0. (3)
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Linear differential equations

In a linear DE, there are no non-linear functions of the dependent variable
or its derivatives, and derivatives are not multiplied together with other
derivatives or the dependent variable, etc..

The most general second order linear ODE is thus

a(x)
d2y
dx2 + b(x)

dy
dx

+ c(x)y = r(x). (4)

Any equation for which this is not true, for example

d2θ

dt2 = −
q
L
sin θ,

is called nonlinear ( sin θ is not linear in the dependent variable θ).
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Homogeneous ODEs

A linear ODE is in standard form if all terms containing the dependent
variable are on the left hand side, and all terms not containing the de-
pendent variable are on the right hand side.

A linear ODE is called a homogeneous ODE, if in its standard form, the
right hand side is zero. Hence,

a(x)
d2y
dx2 + b(x)

dy
dx

+ c(x)y = 0 (5)

is the most general second-order homogeneous ODE.

An ODE that is not homogeneous is called inhomogeneous. For example,
equation (4) is inhomogeneous if r(x) 6= 0 for some x .
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2.2 Properties of linear ODEs

Linear ODEs often appear in Engineering problems, and many useful non-
linear ODEs can be approximated by linear ODEs for certain values of the
independent variable. This is extremely convenient, as linear ODEs can
be solved analytically.

Nonlinear ODEs are much harder to deal with, and many of them can only
be solved numerically, ie on a computer. Methods for this are considered
in module MTHS3001/HG3MCE.
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The superposition principle

The superposition principle states that if y1(x) and y2(x) are two solu-
tions of a linear homogeneous ODE, eg. equation (5), then

y(x) = Ay1(x) + By2(x)

is also a solution of the same ODE for any constants A and B.

If the functions y1(x) and y2(x) are solutions of (5), so

a(x)
d2y1

dx2 + b(x)
dy1

dx
+ c(x)y1 = 0, (6)

a(x)
d2y2

dx2 + b(x)
dy2

dx
+ c(x)y2 = 0. (7)

then adding (6) multiplied by A to (7) multiplied by B gives

a
d2

dx2 (Ay1 + By2) + b
d
dx

(Ay1 + By2) + c(Ay1 + By2) = 0,

so y = Ay1 + By2 is also a solution of (5).
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The function y(x) = Ay1(x)+By2(x) contains two arbitrary constants A
and B. This is a general rule.

If we have two linearly independent solutions y1(x) and y2(x) of a homo-
geneous, linear, 2nd-order ODE (ie. solutions that are not just multiples
of each other), then every solution of that ODE can be written as

y(x) = Ay1(x) + By2(x)

with some constants A and B. This is called the general solution of the
ODE.

A similar rule holds for ODEs of higher orders. The general solution of an
nth order, homogeneous, linear ODE is a linear combination of n linearly
independent solutions: it contains n arbitrary constants.
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Example

Consider the ODE
d2y
dx2 − y = 0.

You can easily check that

y1(x) = ex and y2(x) = e−x

are solutions of the ODE. Thus the general solution is

y(x) = Aex + Be−x .

The question is, how do we find two fundamental solutions y1 and y2 in
general? This is tackled in the Section 2.3.
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Boundary and initial conditions for ODEs

We have seen that a stand-alone differential equation such as

d2y
dx2 − y = 0

has many solutions. Each different value of the constants in

y(x) = Aex + Be−x

gives a different function of x .

In a properly modelled engineering problem we would expect to get a
unique solution. To achieve this we need more information, usually given
in the form of initial conditions or boundary conditions.
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Initial Conditions
With initial conditions, we are given information about the solution at a
single value of the independent variable.

For example, for second order equations, initial conditions are typically of
the following form.

Initial conditions: Find a solution such that, when x = x0, y and
dy
dx

are given numbers:

y(x0) = c1 and y ′(x0) = c2.

Typically here, x0 represents time.

Since there are two arbitrary constants for a second-order equation, we
need two independent bits of information to get a unique solution.
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Example Along with
d2y
dx2 − y = 0,

we are told that
y(0) = 1 and y ′(0) = 0.

Substituting these initial conditions into the general solution y(x) = Aex+
Be−x gives

y(0) = A+ B = 1

y ′(0) = A− B = 0
⇒ A = B =

1
2

so the explicit solution is

y(x) =
1
2
ex +

1
2
e−x .
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Boundary Conditions
With boundary conditions, we are given information about the solution
at multiple values of the independent variable.

An example of boundary conditions for second order equations:

Boundary conditions: Find a solution such that conditions are
satisfied when x = x0 and x = x1. For example

y ′(x0) = c3 and y(x1) = c4.

Typically here, x is a spatial coordinate.

As with initial conditions, we need two independent bits of information
to get a unique solution for a second-order equation.
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Example Along with
d2y
dx2 − y = 0,

we are told that
y ′(0) = 0 and y(1) = 1.

Substituting these boundary conditions into the general solution y(x) =
Aex + Be−x gives

y ′(0) = A− B = 0

y(1) = Ae+ Be−1 = 1
⇒ A = B =

1
e+ e−1

so the explicit solution is

y(x) =
ex + e−x

e+ e−1 .
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Boundary and initial conditions for ODEs

In general, n conditions are required to obtain a unique solution for an
nth order ODE.

For example, the solution of the given by n-th order ODE (3) can be
made unique by imposing the initial conditions

y(x0) = Y0, y ′(x0) = Y1, · · · , y (n−1)(x0) = Yn−1,

specified at the same point x = x0.
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Example Imposing the initial conditions

y(0) = 2, y ′(0) = 3/2, y ′′(0) = 1, y ′′′(0) = 1/2,

on the fourth order equation (2) leads to the unique solution

y(x) = 1+
sin x
2

+ ex .

Check by substitution that this works.

Example Imposing the boundary conditions

y(0) = 1, y ′(0) = 1/2, y(π) = 1, y ′(π) = −1/2

on (2) leads to the unique solution

y(x) = 1+
sin x
2
.
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2.3 Second order homogeneous linear ODEs with
constant coefficients

We consider homogeneous linear ODEs, where the coefficients a, b and
c are constant, ie do not depend on x ,

a
d2y
dx2 + b

dy
dx

+ cy = 0,

where a, b, c are constants.

We want to find the general solution. This is done by “guessing” solutions
of the type y = emx , where m is a constant. Then

y = emx ,
dy
dx

= memx ,
d2y
dx2 = m2emx .

Substituting this into the ODE, we obtain

(am2 + bm + c)emx = 0.
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As emx cannot be zero, we must have

am2 + bm + c = 0.

This quadratic equation for m is called the auxiliary equation.

In general, it has two solutions,

m1 =
−b +

√
b2 − 4ac
2a

and m2 =
−b −

√
b2 − 4ac
2a

.

So we find the following two solutions to the ODE,

y1(x) = em1x and y2(x) = em2x .

The general solution to the ODE is a combination of these,

y(x) = Aem1x + Bem2x ,

with arbitrary (real or complex) constants A and B.
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Example

The auxiliary equation for the ODE

d2y
dx2 − 4y = 0

is
m2 − 4 = 0 ⇒ m = ±2.

The general solution is then

y(x) = Ae2x + Be−2x ,

with arbitrary constants A and B.

Note The same method can be used for an n-th order homogeneous
linear ODE: In this case the we have to find the zeroes of a polynomial
of degree n.
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Example Solve

3
d2y
dx2 − 5

dy
dx
− 2y = 0.

Solution: The auxiliary equation

3m2 − 5m − 2 = 0

can be factorised as

3m2 − 5m − 2 = (3m + 1)(m − 2)

⇒ 3m + 1 = 0 or m − 2 = 0

⇒ m = −
1
3

or m = 2.

Then
y1(x) = e−x/3 and y2(x) = e2x

both satisfy the differential equation and the general solution is

y(x) = Ae−x/3 + Be2x .
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The auxiliary equation is a quadratic equation, and the roots of a qua-
dratic may be

1 distinct and real (as in the examples above),

2 distinct and complex conjugates of each other,

3 real and equal.

This can be seen from the graph of

f (m) = am2 + bm + c .

f f f

m m m

Case 1 Case 2 Case 3
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Case 1 Real distinct roots, m1 6= m2.

The general solution is as previously written

y(x) = Aem1x + Bem2x ,

with arbitrary constants A and B. Job done!

Case 2 Complex conjugate roots,

m1 = α+ iβ and m2 = α− iβ

The general solution is

y(x) = Aem1x + Bem2x = Ae(α+iβ)x + Be(α−iβ)x ,

with arbitrary constants A and B.

However, y1(x) = em1x = e(α+iβ)x and y2(x) = em2x = e(α−iβ)x are
complex-valued and not particularly convenient for representing physical
quantities.
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It is better to use Euler’s formula

eiβx = cos (βx) + i sin (βx)

to rewrite the solution in terms of trig functions as follows:

Ae(α+iβ)x + Be(α−iβ)x = Aeαxeiβx + Beαxe−iβx

= eαx [Aeiβx + Be−iβx ]

= eαx [A( cosβx + i sinβx) + B( cosβx − i sinβx)]

= eαx [(A+ B) cosβx + i(A− B) sinβx ]

= eαx [C cosβx +D sinβx ]

where
C = A+ B and D = i(A− B)

are alternative integration constants. The general solution can be written

y(x) = eαx (C cosβx +D sinβx).

Note: C and D can be real if A and B are complex.
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Example: Solve
d2y
dx2 + 2

dy
dx

+ 2y = 0.

Solution: The auxiliary equation

m2 + 2m + 2 = 0

has the roots
m1 = −1+ i and m2 = −1− i,

so we get the general solution

y(x) = Ae(−1+i)x + Be(−1−i)x

= e−x [Aeix + Be−ix ]

...

= e−x [C cos x +D sin x ],

where C and D are arbitrary constants (and actually, we don’t care how
they’re related to A and B since all the constants are arbitrary anyway).
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Case 3 Equal roots, m1 = m2.

We have found only one fundamental solution solution,

y1(x) = em1x .

We need another! In this special case it turns out that

y2(x) = xem1x

is also a solution. You can check by substituting into the ODE.

In this case the general solution is

y(x) = Ay1(x) + By2(x)

= (A+ Bx)em1x

with arbitrary constants A and B.
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Example: Solve
d2y
dx2 + 2

dy
dx

+ y = 0.

Solution: The auxiliary equation is

m2 + 2m + 1 = (m + 1)2 = 0

and m = −1 is a double root. Then we know

y1(x) = e−x

is one root and have been told

y2(x) = xe−x

is another.
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Check this:

dy2

dx
= e−x − xe−x = (1− x)e−x

d2y2

dx2 = −e−x − (1− x)e−x = (x − 2)e−x

and therefore

d2y2

dx2 + 2
dy2

dx
+ y2 = [((x − 2) + 2(1− x) + x ]e−x = 0.

The general solution is then

y(x) = Ay1(x) + By2(x) = (A+ Bx)e−x .
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Example: Solve
d2y
dx2 + 3

dy
dx

+ 2y = 0

subject to the initial conditions y(0) = 1 and y ′(0) = 0.

Solution: The auxiliary equation is

m2 + 3m + 2 = 0
⇒ (m + 1)(m + 2) = 0,

so the roots are m1 = −1, m2 = −2. We have real distinct roots, so the
general solution is

y(x) = Ae−x + Be−2x .

The imposed initial conditions give

y(0) = A+ B = 1

y ′(0) = −A− 2B = 0
⇒ A = 2

B = −1
The explicit solution is therefore y(x) = 2e−x − e−2x .
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Example: Solve
d2y
dx2 + 2

dy
dx

+ 5y = 0

subject to the boundary conditions y(0) = 1 and y(π/4) = 0.

Solution: The auxiliary equation is

m2 + 2m + 5 = 0,

with complex roots, m = −1± 2i , so the general solution is

y(x) = e−x [C cos (2x) +D sin (2x)] .

The imposed boundary conditions give

y(0) = C = 1

y(π/4) = e−π/4
[
C cos

π

2
+D sin

π

2

]
= e−π/4D = 0

The explicit solution is therefore y(x) = e−x cos (2x).
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Example:
d2y
dx2 + 4

dy
dx

+ 4y = 0.

subject to the initial conditions y(0) = 0 and y ′(0) = 1.

Solution: The auxiliary equation is

m2 + 4m + 4 = 0
⇒ (m + 2)(m + 2) = 0,

with equal roots m = −2 and −2. The general solution is then

y = (Ax + B)e−2x .

The imposed initial conditions give

y(0) = B = 0 ⇒ y(x) = Axe−2x ⇒ y ′(x) = A(1− 2x)e−2x

⇒ y ′(0) = A = 1

The explicit solution is therefore y(x) = xe−2x .
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Example: This is a more challenging example. It involves a higher-order
equation and some quantities are expressed as general parameters rather
than simple numbers.

A common model for the shape of a vibra-
ting beam is

d4y
dx4 − k4y = 0,

where y(x) describes how far the beam de-
flects at position coordinate x .

The parameter k depends on the material parameters of the beam,
its geometry and the frequency of vibration.

This is a fourth-order differential equation, so we need four
independent bits of information to get an explicit solution -
provided by the boundary conditions overleaf.
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Boundary conditions for a vibrating cantilever

The problem in the diagram shows a can-
tilever, fixed to a wall at one end and free
at the other.

Let the fixed and free ends correspond to
x = 0 and x = L respectively.

• The boundary conditions

y(0) = 1 and y ′(0) = 0.

model the situation where the cantilever is mounted horizontally and the
point of attachment oscillates up and down, with amplitude equal to one
unit of length.

• But a fourth-order equation needs two more conditions! If no forces/moments
are applied at the free end, it can be shown that

y ′′(L) = 0 and y ′′′(L) = 0.
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General solution of the vibrating beam equation
If we substitute the usual guess y(x) = emx in the vibrating beam equation
we get the auxiliary equation

m4 = k4.

Here k is a fixed parameter and we are to find m. There are four solutions:

m = k , m = −k , m = ik and m = −ik .

The general solution of the equation then has four independent constants,
which can be expressed in the following alternative ways:

y(x) = Eekx + Fe−kx + Aeikx + Be−ikx

= Eekx + Fe−kx + C cos kx +D sin kx ,

where C = A+ B and D = i(A− B).
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We will make one more change to the form

y(x) = C cos kx +D sin kx + Eekx + Fe−kx ,

of the general solution given on the previous slide. Recall the hyperbolic
functions, defined

cosh θ =
1
2

(
eθ + e−θ

)
and sinh θ =

1
2

(
eθ − e−θ

)
and satisfying the identities

cosh θ + sinh θ = eθ and cosh θ − sinh θ = e−θ.

Then

Eekx + Fe−kx = G cosh kx + H sinh kx

where G = E + F and H = E − F . The general solution can then be
alternatively written

y(x) = C cos kx +D sin kx + G cosh kx + H sinh kx ,

This form makes applying boundary conditions easier less messy!
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Explicit solution of the vibrating cantilever
Let’s start from the general solution expressed in the form

y(x) = C cos kx +D sin kx + G cosh kx + H sinh kx ,

where C , D, G and H are four independent constants to be determined
from the four boundary conditions.

The boundary conditions at x = 0 give

y(0) = C + G = 1 ⇒ G = 1− C

y ′(0) = k (D + H) = 0 ⇒ H = −D,

so now we know the solution is of the form

y(x) = cosh kx + C ( cos kx − cosh kx) +D ( sin kx − sinh kx)

There are still two undetermined constants, C and D, which are fixed by
the boundary conditions at the other end.
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The boundary conditions at x = L give

0 =
y ′′(L)
k2 = cosh kL− C ( cos kL+ cosh kL)−D ( sin kL+ sinh kL)

0 =
y ′′′(L)
k3 = sinh kL+ C ( sin kL− sinh kL)−D ( cos kL+ cosh kL)

which can be rearranged as two simultaneous equations

( cos kL+ cosh kL)C + ( sin kL+ sinh kL)D = cosh kL

(− sin kL+ sinh kL)C + ( cos kL+ cosh kL)D = sinh kL

or in matrix form(
cos kL+ cosh kL sin kL+ sinh kL
− sin kL+ sinh kL cos kL+ cosh kL

)(
C
D

)
=

(
cosh kL
sinh kL

)
The equations are still quite complicated, so we won’t attempt to solve
them here, but they can be solved easily numerically. In an engineering
sense this problem is done.
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2.4 Inhomogeneous linear ODEs with constant
coefficients

The linear ODE

a
d2y
dx2 + b

dy
dx

+ cy = r(x),

where the RHS involves x , but not y , is an inhomogeneous ODE.

This equation is solved in two stages:

1 Solve the homogeneous equation obtained by setting r(x) = 0:

a
d2y
dx2 + b

dy
dx

+ cy = 0,

using the method from the previous subsection. The general
solution, denoted yc(x) = Ay1(x) + By2(x), is called the
complementary function.
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2 Find a particular solution or particular integral yp(x) of the
inhomogeneous equation

Method of undetermined parameters: Depending on the form of
r(x), substitute an informed guess for yp(x) that has undetermined
parameters in it. Plug in the differential equation to get equations
for the parameters and solve them.

Once we have found the complementary function and a particular
integral, the general solution of the inhomogeneous equation is

y(x) = yc(x) + yp(x) = yp(x) + Ay1(x) + By2(x).

The main challenge here is to find particular integrals - which we do by
example.
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Example: Solve
d2y
dx2 − 3

dy
dx

+ 2y = e−x .

Solution:

First solve the associated homogeneous equation. The auxiliary
equation is

m2 − 3m + 2 = 0,

with solutions m = 1 and m = 2. Hence the complementary
function is

yc(x) = Aex + Be2x .

Now find a particular integral corresponding to r(x) = e−x . What
sort of function could give r(x) = e−x when differentiated and
added? Guess a solution of the form

yp(x) = ae−x ,

where a is a constant.
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Differentiating yp(x) = ae−x gives

dyp

dx
= −ae−x and

d2yp

dx2 = ae−x .

Substitute yp into the ODE:

yp
′′(x)− 3yp

′(x) + 2yp(x) = ae−x − 3
(
−ae−x)+ 2ae−x

= 6ae−x

= r(x) = e−x .

So we need
6ae−x = e−x .

This works if we choose we a = 1/6. Then the particular integral is

yp(x) =
1
6
e−x

and the general solution of the inhomogeneous ODE is

y(x) = Aex + Be2x +
1
6
e−x .
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Example: Solve
d2y
dx2 − 3

dy
dx

+ 2y = 3− 2x2

Solution:

Since the LHS is the same as in the previous example, we have the
same complementary function:

yc(x) = Aex + Be2x .

Now let’s find the particular integral: what function might give
r(x) = 3− 2x2 after repeated differentiation and then adding the
results? Try

yp(x) = ax2 + bx + c ,

where a, b and c are parameters to be determined.
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Differentiating yp(x) = ax2 + bx + c a couple of times gives

dyp

dx
= 2ax + b,

d2yp

dx2 = 2a.

Substitute into the ODE:

yp
′′(x)− 3yp

′(x) + 2yp(x) = 2a − 3(2ax + b) + 2(ax2 + bx + c)

= 2ax2 + (−6a + 2b)x + (2a − 3b + 2c)

= r(x) = 3− 2x2.

Now find a, b and c by comparing coefficients,

x2 : 2a = −2 ⇒ a = −1,
x1 : −6a + 2b = 0 ⇒ b = −3,
x0 : 2a − 3b + 2c = 3 ⇒ c = −2.

So the complete solution to the ODE is

y(x) = Aex + Be2x − x2 − 3x − 2.
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Example: Solve
d2y
dx2 − 3

dy
dx

+ 2y = sin x

Solution:

Again, the complementary function is the same as before:

yc(x) = Aex + Be2x .

Try to find a particular integral: what kind of function might give
r(x) = sin x after substitution in the differential equation? The
guess

yp(x) = a sin x ,

is tempting but doesn’t work:

yp
′′(x)− 3yp

′(x) + 2yp(x) = −a sin x − 3a cos x + 2a sin x = sin x .

There is no value of a that satisfies both

a sin x = sin x and − 3a cos x = 0.
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So we try a particular integral of the more general form

yp(x) = a sin x + b cos x .

Substitute into the ODE:

yp
′′(x)− 3yp

′(x) + 2yp(x) = −a sin x − b cos x

−3a cos x + 3b sin x

+2a sin x + 2b cos x

= (a + 3b) sin x + (b − 3a) cos x

= r(x) = sin x .

Now find a and b by comparing coefficients:

cos x : b − 3a = 0 ⇒ b = 3a.

sin x : a + 3b = 1 ⇒ a + 9a = 1.
⇒

a =
1
10

b =
3
10
.

This works! The solution to the ODE is then

y(x) = Aex + Be2x +
1
10

sin x +
3
10

cos x .
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Let us summarise the lessons so far about how to choose a particular
integral.

How to choose the particular integral

If the RHS is a polynomial of degree n, choose the most general
polynomial of the same degree.

If the RHS is eαx , choose

yp(x) = aeαx .

If the RHS is cos (αx) or sin (αx) or some linear combination of
them, choose

yp(x) = a cos (αx) + b sin (αx).
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2.5 Right hand sides needing more complicated guesses

There are cases where the strategies on the previous slide fail or need to
be extended. Let’s look at some examples.

Example Solve
d2y
dx2 − 3

dy
dx

+ 2y = ex

Solution This is an example of an exceptional case: the RHS r(x) = ex

is a solution of the homogeneous equation, ie it appears in the comple-
mentary function, yc(x) = Aex + Be2x .

In this case the natural first choice for the particular integral,

yp(x) = aex ,

fails, as it gives

yp
′′(x)− 3yp

′(x) + 2yp(x) = aex − 3aex + 2aex = 0.

No matter what we choose for a, this can’t match the desired RHS
r(x) = ex .
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The solution is to try a particular integral of the form

yp(x) = axex .

Then
dyp

dx
= axex + aex ,

d2yp

dx2 = axex + 2aex .

Substitute into the ODE:

yp
′′(x)− 3yp

′(x) + 2yp(x) = axex + 2aex − 3(axex + aex ) + 2axex

= −aex

= r(x) = ex

(all the terms containing xex have cancelled). So the guess works if we
choose a = −1. The solution to the ODE is

y = Aex + Be2x − xex .

A similar modification of the standard guess is needed in all cases where
the RHS is a solution of the homogeneous equation.
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Example Solve
d2y
dx2 − 3

dy
dx

+ 2y = ex

Subject to the initial conditions

y(0) = 1 and y ′(0) = 0.

Solution The general solution of the ODE,

y(x) = Aex + Be2x − xex ,

was found in the previous example. At x = 0,

y(0) = A+ B = 1 and y ′(0) = A+ 2B − 1 = 0.

Thus A = 1 and B = 0, and the solution to the ODE with the given
initial conditions is

y = ex − xex .
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The following examples show cases where the RHS is more complicated
than the simple functions encountered so far.

Example: Find the general solution of

d2y
dx2 − y = e−2x + 3.

Solution The auxiliary equation is m2 − 1 = 0 and the complementary
function is

yc(x) = Aex + Be−x .

Now we look for the particular integral. The right hand side is a sum of
an exponential and a constant, so we should try something of that type:
an exponential with the same exponent plus a constant:

yp(x) = ae−2x + b.
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Substituting yp(x) = ae−2x + b in the differential equation gives

yp
′(x) = −2ae−2x , yp

′′(x) = 4ae−2x ,

which we can substitute into the inhomogeneous equation to get

yp
′′(x)− yp(x) = 3ae−2x − b = e−2x + 3.

Thus we have a = 1/3 and b = −3, so the particular integral is

yp(x) =
1
3
e−2x − 3

and the general solution is

y(x) = Aex + Be−x +
1
3
e−2x − 3.
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Example: Find the general solution of

d2y
dx2 − y = e−2x cos x .

Solution The complementary function is the same as in the previous
example. For the particular integral, let us try a product of our usual
guess for e−2x and our usual guess for cos x :

yp(x) = e−2x (a cos x + b sin x) .

Then

yp
′(x) = e−2x (−a sin x + b cos x)− 2e−2x (a cos x + b sin x)

= e−2x ((b − 2a) cos x − (a + 2b) sin x)

and

yp
′′(x) = e−2x (−(b − 2a) sin x − (a + 2b) cos x)

−2e−2x ((b − 2a) cos x − (a + 2b) sin x)

= e−2x ((3a − 4b) cos x + (4a + 3b) sin x) .
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If we substitute this into the inhomogeneous equation, we get

yp
′′(x)− yp(x) = e−2x ((3a − 4b) cos x + (4a + 3b) sin x)

−e−2x (a cos x + b sin x)

= e−2x ((2a − 4b) cos x + (4a + 2b) sin x)

= r(x) = e−2x cos x .

This works if

2a − 4b = 1

4a + 2b = 0,

which can be solved to give a = 1/10, b = −1/5. Therfore the particular
integral is

yp(x) =
1
10

e−2x ( cos x − 2 sin x)

and the general solution is

y(x) = Aex + Be−x +
1
10

e−2x ( cos x − 2 sin x) .
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Example Find the general solution of

d2y
dx2 − y = xe2x .

Solution Again, we know the complementary function from the previous
example. For the particular integral, try

yp(x) = (ax + b)e2x .

Then

yp
′(x) = 2(ax + b)e2x + ae2x

= (2ax + a + 2b)e2x

and

yp
′′(x) = 2(2ax + a + 2b)e2x + 2ae2x

= (4ax + 4a + 4b)e2x .
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Substituting this into the inhomogeneous equation, we get

yp
′′(x)− yp(x) = (4ax + 4a + 4b)e2x − (ax + b)e2x

= (3ax + 4a + 3b)e2x

= r(x) = xe2x .

Comparing coefficients then reveals that

3a = 1 ⇒ a =
1
3

and
4a + 3b =

4
3
+ 3b = 0 ⇒ b = −

4
9
,

which gives us the particular integral

yp(x) =
1
9
(3x − 4)e2x

and the general solution

y(x) = Aex + Be−x +
1
9
(3x − 4)e2x .
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2.6 Systems of ODEs

We can apply what we have learned about solving second-order equations
to solving systems of equations.

For example, the system of coupled, first-order equations

dy
dx

= z

dz
dx

= x − 2y − 3z

is equivalent to the second order equation

d2y
dx2 + 3

dy
dx

+ 2y = x .
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Proof If starting from the system

dy
dx

= z

dz
dx

= x − 2y − 3z ,

simply substitute z = dy/dx from the first equation into the second to
get

d2y
dx2 = x − 2y − 3

dy
dx
,

which can be rearranged to give the second order equation on the previous
slide.

Alternatively, if starting form the second-order equation

d2y
dx2 + 3

dy
dx

+ 2y = x ,

then define z = dy/dx and then

dz
dx

+ 3z + 2y = x ,

which can be rearranged to give the system on the previous slide.
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Example Solve

dy
dx

+ u = 3

du
dx

+ y = 2.

Solution First differentiate the first equation to get

d2y
dx2 +

du
dx

= 0.

Then use the second equation to eliminate du/dx = 2− y , giving

d2y
dx2 − y + 2 = 0.

This is called the method of elimination. This second-order equation can
now be solved by the methods we already know. The solution is

y(x) = Aex + Be−x + 2

(check this!).
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The solution for u can be found directly from the first equation in the
original system:

dy
dx

+ u = 3 ⇒ u(x) = 3−
dy
dx

= 3− Aex + Be−x .

The constants A and B can be found from initial or boundary conditions.
For example, if the initial conditions

y(0) = 1 and u(0) = 0

are imposed, then we find

A+ B + 2 = 1
3− A+ B = 0

⇒ A = 1
B = −2.

The explicit solution is then

y(x) = 2+ ex − 2e−x

u(x) = 3− ex − 2e−x .
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Example Solve

dx
dt

+ 2x + y = 0

dy
dt
− 3x − 2y = e−2t

subject to the initial conditions x(0) = 0 and y(0) = 0.

Solution Differentiate the first equation to get

d2x
dt2 + 2

dx
dt

+
dy
dt

= 0,

and then use the second to substitute

dy
dt

= e−2t + 3x + 2y ,

giving
d2x
dt2 + 2

dx
dt

+ 3x + 2y + e−2t = 0.

This still involves y , so we’re not done yet!
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Use the first equation to get

y = −
dx
dt
− 2x

so substitute to give
d2x
dt2 − x = −e−2t .

(ii) Solve the auxiliary equation m2 − 1 = 0. This gives m = ±1, so
the complementary function is xc(t) = Aet + Be−t .
For the particular integral, try xp(t) = Ce−2t , and find C = − 1

3 .
The general solution is

x(t) = Aet + Be−t −
1
3
e−2t

and

y(t) = −
dx
dt
− 2x = −3Aet − Be−t .
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(iii) Apply initial conditions

x(0) = 0 = A+ B −
1
3

y(0) = 0 = −3A− B

so A = −1/6 and B = 1/2.

Therefore

x(t) = −
1
6
et +

1
2
e−t −

1
3
e−2t

y(t) =
1
2
et −

1
2
e−t
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