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5 Laplace Transforms

This chapter is about a very powerful technique for differential equations
(and some integral equations): Laplace transforms. It is the language of
many areas of engineering, such as control theory.

ODE
for y(t)

(i) transform
−→
ȳ = L(y)

algebraic
equation for
ȳ(s)

↓ (ii) solve for
ȳ(s)

solution
y(t)

(iii) inverse transform
←−
y = L−1(ȳ)

ȳ(s) = known

The approach is not to solve the ODE directly, but to transform the
solution y(t) into a new function of a new variable ȳ(s) which solves an
(easier!) algebraic problem.
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5.1 Definition and basic properties

Given a function f (t), defined for t ≥ 0, its Laplace transform is written

L{f (t)} = f̄ (s) =

∫ ∞
0

e−st f (t) dt,

provided this integral exists. If necessary we will assume that s is (positive
and) large enough for this to be the case.

Example Let
f (t) = eat .

Then

L{f (t)} = f̄ (s) =

∫ ∞
0

e−steat dt

=

∫ ∞
0

e−(s−a)t dt

=

[
−
e−(s−a)t

s − a

]∞
0

=
1

s − a

provided a < s.
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To see why this is useful, let us see how it transforms derivatives.

L
{
df
dt

}
=

∫ ∞
0

e−st df
dt

dt

=
[
e−st f (t)

]∞
0 −

∫ ∞
0

(−se−st)f (t) dt

= −f (0) + s
∫ ∞

0
e−st f (t) dt

= −f (0) + sf̄ (s)

Notice:

We must assume that s is large enough and f (t) grows slowly
enough that e−st f (t)→ 0 as t →∞ for this to be true.

A derivative (calculus) has been turned into multiplication
(algebra).

Furthermore, initial conditions are automatically accounted for!
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Similarly, we can obtain the Laplace transform of the second derivative.
Use the previous result

L
{
df
dt

}
= −f (0) + sf̄ (s) = −f (0) + sL{f (t)}

with f (t)→ f ′(t) to get

L
{
d2f
dt2

}
= L

{
df ′

dt

}
= −f ′(0) + sL{f ′(t)}
= −f ′(0) + s(−f (0) + sL{f (t)}
= −f ′(0)− sf (0) + s2L{f (t)}
= −f ′(0)− sf (0) + s2 f̄ (s)
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We can keep going to higher derivatives! Eg.

L
{
d3f
dt3

}
= L

{
df ′′

dt

}
= −f ′′(0) + sL{f ′′(t)}
= −f ′′(0) + s(−f ′(0)− sf (0) + s2 f̄ (s))

= −f ′′(0)− sf ′(0)− s2f (0) + s3 f̄ (s).

These results are useful for solving ODEs, as the Laplace transforms
include no derivatives of f̄ (s): If we apply the Laplace transform to an
ODE, we will get a purely algebraic equation.

Advantages:

(a) Initial conditions are built in from the start. This means the
method is particularly suitable for initial value problems, where f
and f ′ are known at t = 0.

(b) There is no need to guess a particular integral.
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5.2 Laplace transforms of some important functions

Example
Let f (t) = 1. Then

f̄ (s) =

∫ ∞
0

e−st dt =
[
−e−st/s

]∞
0 =

1
s

provided s > 0 (otherwise the Laplace transform would not exist). Hence

L{1} =
1
s

and 1 = L−1
{
1
s

}
.

Remark
This is a special case of the identity

L
{
eat} =

1
s − a

and eat = L−1
{

1
s − a

}
already shown.
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Example

Let f (t) = t. Then

f̄ (s) =

∫ ∞
0

te−st dt

=

∫ ∞
0

t
d
dt

(
−
1
s
e−st

)
dt

=

[
t
(
−
1
s
e−st

)]∞
0

+
1
s

∫ ∞
0

e−st dt

= 0 +
1
s
L(1) (choose s > 0 so brackets vanish)

=
1
s
×

1
s

=
1
s2 .

Therefore
L{t} =

1
s2 .
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Example

Let f (t) = t2. Then

f̄ (s) =

∫ ∞
0

t2e−st dt

=

∫ ∞
0

t2 d
dt

(
−
1
s
e−st

)
dt

=

[
t2
(
−
1
s
e−st

)]∞
0

+
1
s

∫ ∞
0

(2t)e−st dt

= 0 +
2
s
L(t) (choose s > 0 as before)

=
2
s
×

1
s2

=
2
s3 .

Therefore

L
{
t2} =

2
s3 .

More generally

L{tn} =
n(n − 1) · · · 2 · 1

sn+1 =
n!

sn+1 .
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Example

Let f (t) = sin (kt). Then

f̄ (s) =

∫ ∞
0

e−st sin (kt) dt =

∫ ∞
0

sin (kt)
d
dt

(
−
1
s
e−st

)
dt

=

[
sin (kt)

(
−
1
s
e−st

)]∞
0

+
1
s

∫ ∞
0

k cos (kt)e−st dt

= 0 +
k
s

∫ ∞
0

cos (kt)e−st dt (choose s > 0)

=
k
s

[
cos (kt)

(
−
1
s
e−st

)]∞
0
−

k2

s2

∫ ∞
0

sin (kt)e−st dt

=
k
s2 −

k2

s2 f (s).

Hence
(
1 +

k2

s2

)
f̄ (s) =

k
s2 , which gives f̄ (s) =

k
s2 + k2 .
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Example

Let f (t) = cos (kt). Then (alternative method) use

cos (kt) = Re
(
eikt) = Re ( cos (kt) + i sin (kt))

to note that

f̄ (s) = Re
∫ ∞

0
e−steikt dt

= Re
∫ ∞

0
e−(s−ik)t dt

= Re
(

1
s − ik

)
(for example, use L{eat} = 1/(s − a) with a = ik). Then

f̄ (s) = Re
(

1
s − ik

×
s + ik
s + ik

)
= Re

(
s + ik
s2 + k2

)
=

s
s2 + k2 .
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This way we can build a table of
Laplace transforms, which we can use
to find inverse Laplace transforms.

For each function f̄ (s) in the table,
there is a corresponding function
f (t), such that f̄ (s) is the Laplace
transform of f (t).

f (t) and f̄ (s) are often called Laplace transform pairs.

An example of a Laplace transform pair is

L
{
eat} =

1
s − a

and L−1
{

1
s − a

}
= eat .

Without such tables, finding inverse Laplace transforms would not
be easy!
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Example What is L−1
(

1
s2 + 3

)
?

Use the table result
L ( sin at) =

a
s2 + a2

with a =
√
3 to get

L−1
(

1
s2 + 3

)
=

1√
3
sin
(√

3t
)
.

Example What is L−1
(

1
s10 −

1
s11

)
?

Use the table result

L (tn) =
n!

sn+1

with n = 9 and n = 10 to get

L−1
(

1
s10 −

1
s11

)
=

t9

9!
−

t10

10!
.
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Example What is L−1
(

1
s2 + 5s + 6

)
?

This one is not in the table. First do partial fractions

1
s2 + 5s + 6

=
1

(s + 2)(s + 3)

=
A

s + 2
+

B
s + 3

=
A(s + 3) + B(s + 2)

(s + 2)(s + 3)
.

This works if A(s + 3) + B(s + 2) = 1. Choose values

s = −2 ⇒ A = 1

s = −3 ⇒ −B = 1⇒ B = −1.

to get

L−1
(

1
s2 + 5s + 6

)
= L−1

(
1

s + 2
−

1
s + 3

)
= e−2t − e−3t .
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5.3 Application of Laplace transforms to ODEs

Example: Use Laplace transforms to solve first order ODE

dy
dt

+ y = e2t with y(0) = 1. (1)

Solution: There are three stages in the process.

(i) First take the Laplace transform of both sides of (1), which gives

L
{
dy
dt

}
+ L{y} = L

{
e2t} ,

and using in particular L (dy/dt) = sȳ(s)− y(0),

sȳ(s)− 1 + ȳ(s) =
1

s − 2
. (2)
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(ii) Solve the algebraic equation (2) for ȳ(s),

sȳ(s)− 1 + ȳ(s) =
1

s − 2
⇒ (s + 1)ȳ(s) = 1 +

1
s − 2

⇒ ȳ(s) =
1

s + 1
+

1
(s + 1)(s − 2)

⇒ ȳ(s) =
s − 1

(s + 1)(s − 2)

(iii) Now we ask, what function y(t) has this Laplace transform?
Formally we write

y(t) = L−1 {ȳ(s)}

= L−1
{

s − 1
(s + 1)(s − 2)

}
.
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Here we use partial fractions to write

ȳ(s) =
s − 1

(s + 1)(s − 2)
=

A
s + 1

+
B

s − 2
=

2
3(s + 1)

+
1

3(s − 2)
.

Hence we see from
L
{
eat} =

1
s − a

that

L−1
{

1
s + 1

}
= e−t , L−1

{
1

s − 2

}
= e2t ,

and hence that
y(t) =

2
3
e−t +

1
3
e2t .

Remember that this has automatically accounted for initial conditions!
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Example A second order ODE.

d2y
dt2 + y = t with y(0) = 1, y ′(0) = 0. (3)

(i) Taking the Laplace transform of both sides of (3) gives

s2ȳ(s)− y ′(0)− sy(0) + ȳ(s) =
1
s2 .

Applying the initial conditions leads to

(s2 + 1)ȳ(s) =
1
s2 + s.

(ii) This can now be solved,

ȳ(s) =
1

s2(s2 + 1)
+

s
s2 + 1

.
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(iii) We want to apply the inverse Laplace transform to

ȳ(s) =
1

s2(s2 + 1)
+

s
s2 + 1

.

The second term appears directly in the table of Laplace
transforms: s

s2 + 1
= L{ cos t}

The first term can be dealt with using partial fractions,

1
s2(s2 + 1)

=
1
s2 −

1
s2 + 1

= L{t − sin t}

(using tables). Then

y(t) = t − sin t + cos t.

We can easily check that y obeys the ODE and the initial
conditions,

y(0) = cos 0 = 1, y ′(0) = 1− cos (0) = 0.
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Example: Two coupled ODEs: let x and y satisfy the ODEs

dx
dt

+ x − 3y = 0 (4)

dy
dt

+ 3x − y = e−t , (5)

with x(0) = 0 and y(0) = 0.

Solution:

(i) Taking the Laplace transform of equations (4) and (5) gives two
simultaneous algebraic equations for x̄(s) and ȳ(s):

sx̄ + x̄ − 3ȳ = 0, (6)

sȳ + 3x̄ − ȳ =
1

s + 1
. (7)
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(ii) Use (6) to eliminate

x̄ =
3ȳ

s + 1
in (7), leading to

(s − 1)ȳ +
9ȳ

s + 1
=

1
s + 1

⇒ ((s + 1)(s − 1) + 9) ȳ = (s2 + 8)ȳ = 1

⇒ ȳ(s) =
1

s2 + 8
.

(iii) Invert using the table,

y(t) = L−1
{

1
s2 + 8

}
=

1√
8
sin (
√
8t).

Then x can be found from rearranging equation (5),

3x = y−
dy
dt

+ e−t ⇒ x(t) =
1

3
√
8
sin (
√
8t)−

1
3
cos (
√
8t)+

1
3
e−t .
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5.4 The Heaviside function and the Dirac delta function

These are two useful functions for modelling eg a sudden pulse or a
discontinuous forcing function.

The Heaviside step function H is defined by

H(t) =

{
0 for t < 0,

1 for t ≥ 0.

(  )H  t

t

Therefore H(t − a) is

H(t − a) =

{
0 for t < a

1 for t ≥ a.

H   t

ta

(  )

So H(t−a) describes for example a current that is switched on at t = a.
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Examples of functions that can be described using H.

(i) (t − 2)H(t − 2) =

{
0 for t < 2
t − 2 for t ≥ 2.

2
t

(ii) Let y(t) = 1− H(t − a). Then

y(t) =

{
1 for t < a
0 for t ≥ a. t

a

y  t(  )

(iii) Let f (t) = H(t − 1)− H(t − 2). Then

f (t) =


0 for t < 1
1 for 1 ≤ t < 2
0 for t ≥ 2.

21

(  )f  t

t
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(iv) Let g(t) = sin t
[
H
(
t − π2

)
− H

(
t − 3π

2

)]
. Then

g(t) =


0 for t < π

2
sin t for π

2 ≤ t < 3π
2

0 for t ≥ 3π
2 .

/2π π3   /2
t

0 π

g   t(  )

The Laplace transform of H(t − a) is Very Useful:

L{H(t − a)} =

∫ ∞
0

e−stH(t − a) dt

=

∫ ∞
a

e−st dt

=
e−as

s
.
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The Dirac delta function is defined by the conditions

δ(t) = 0 for t 6= 0,

and ∫ a

−a
δ(t) dt = 1 for any a > 0.

The name “delta function” is a bit misleading: it is not a function in
the strict mathematical sense. It is something more general, called a
distribution.

We are more concerned with how to use it. Let us just accept the defini-
tion above, and try to obtain a picture of δ(t) by considering the function

∆(t) =


1
2ε

for − ε < t < ε,

0 otherwise.

∆(  )

t

   t

ε ε
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Then ∫ ∞
−∞

∆(t) dt =

∫ ε
−ε

1
2ε

dt =

[
t
2ε

]ε
−ε

= 1.

We can formally write
δ(t) = lim

ε→0
∆(t).

Note that this is not a limit in the strict mathematical sense, as the limit
does not exist at t = 0. But it becomes a correct limit when we integrate
it: ∫ ∞

−∞
δ(t)f (t) dt = lim

ε→0

∫ ∞
−∞

∆(t)f (t) dt,

where f is any continous function.

We can use the delta function to represent a quantity which occupies a
very small region of space, or exists for an instant of time, for example
point force, point charge, impulse.
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An important property of the delta function is that∫ c

b
f (t)δ(t − a) dt = f (a),

provided the range of integration includes t = a, ie b < a < c .

The Laplace transform of δ(t − a) can be found using this result:

L{δ(t − a)} =

∫ ∞
0

e−stδ(t − a) dt = e−sa,

provided a > 0.
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5.5 Some properties of Laplace transforms

The Laplace transform has some properties that are useful for solving
ODEs (we have already used some of them without making a big deal
about it).

A. Linearity

L{af (t) + b g(t)} = aL{f (t)}+ bL{g(t)},

eg L
{
e2t + 2e−t} =

1
s − 2

+
2

s + 1
,

and therefore

L−1
{

1
s − 2

+
2

s + 1

}
= e2t + 2e−t .

MTHS2007 Advanced Mathematics for Engineers 28



B. First Shifting Theorem

L{eat f (t)} =

∫ ∞
0

e−steat f (t) dt

=

∫ ∞
0

e−(s−a)t f (t) dt

= f̄ (s − a).

Using the First Shifting Theorem with a = 2, we get

L{ sin 3t} =
3

s2 + 9
, so L

{
e2t sin 3t

}
=

3
(s − 2)2 + 9

.

Hence

L−1
{

3
s2 − 4s + 13

}
= L−1

{
3

(s − 2)2 + 9

}
= e2t sin 3t.
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C. Second Shifting Theorem
We can derive the Second Shifting Theorem by considering the
transform of f (t − a)H(t − a):

L{f (t − a)H(t − a)} =

∫ ∞
0

e−st f (t − a)H(t − a) dt

=

∫ ∞
a

e−st f (t − a) dt.

Substituting t = u + a gives

=

∫ ∞
0

e−s(u+a)f (u) du = e−as
∫ ∞

0
e−suf (u) du = e−as f̄ (s).

Therefore
L{f (t − a)H(t − a)} = e−as f̄ (s).
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Example: Solve
d2y
dt2 + 9y = 10 δ(t − 2)

with y(0) = 0 and y ′(0) = 1.

Solution: Taking the Laplace transform of both sides gives

(s2 + 9)ȳ − 1 = 10e−2s ⇒ ȳ =
1

s2 + 9
+

10e−2s

s2 + 9
.

Now

L−1
{

1
s2 + 9

}
=

1
3
sin (3t),

and from the second shifting theorem we get

L−1
{
10e−2s

s2 + 9

}
=

10
3

sin (3(t − 2)) H(t − 2),

Hence
y(t) =

1
3
sin 3t +

10
3

sin 3(t − 2)H(t − 2).
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D. The Convolution Theorem
The convolution f ? g of two functions f (t) and g(t) defined for
t > 0 is

(f ? g)(t) =

∫ t

0
f (u)g(t − u) du.

It can be shown, using double integrals, that the Laplace transform
of the convolution is

L{(f ? g)(t)} = f̄ (s)ḡ(s),

or alternatively

L−1 {f̄ (s) ḡ(s)
}

= (f ? g)(t) =

∫ t

0
f (u)g(t − u)du.

This result is called the Convolution Theorem. It is sometimes
useful for inverting Laplace transforms.
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Example: Find

L−1
{

k
s2(s2 + k2)

}
.

Solution: Let
f̄ (s) =

1
s2 and ḡ(s) =

k
s2 + k2 .

Then

L−1
{

k
s2(s2 + k2)

}
= L−1 {f̄ (s) ḡ(s)

}
.

From the table of Laplace transforms we know that

f (t) = t and g(t) = sin (kt).

Then using the Convolution Theorem we get

L−1 {f̄ (s)ḡ(s)
}

=

∫ t

0
f (u)g(t − u) du

=

∫ t

0
u sin (k(t − u)) du.
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We can work out this convolution integral explicitly using integration by
parts:∫ t

0
u sin (k(t − u)) du =

[
−u

cos (k(t − u))

(−k)

]t

0
−
∫ t

0

− cos (k(t − u))

(−k)
du

=
t
k
−

1
k

[
sin (k(t − u))

(−k)

]t

0

=
1
k2 (kt − sin (kt)) .

Therefore we have shown that

L−1
{

k
s2(s2 + k2)

}
=

1
k2 (kt − sin (kt)) .
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E. The Final Value Theorem
This says that

lim
t→∞

f (t) = lim
s→0

[
sf̄ (s)

]
provided lim

t→∞
f (t) exists.

This theorem, which is useful in Control Theory, enables the
long-time behaviour of a function to be determined from its
Laplace transform without the need to find the complete solution.

This means that the existence, or non-existence, of the limit of
f (t) as t →∞ can be determined by inspection of f̄ (s).
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5.6 Solving ODEs with piecewise elements

ODEs involving the Heavyside function or the delta function are best
solved using Laplace transforms.

Example: An oscillator, initially at rest, has constant forcing that is swit-
ched off at t = 2, ie

d2y
dt2 + y = 1− H(t − 2)

with y(0) = 0 and y ′(0) = 0.

Solution: Taking the Laplace transform, we get

s2ȳ + ȳ =
1
s
−

e−2s

s
⇒ ȳ =

1
s(s2 + 1)

(1− e−2s).

Using partial fractions reveals

1
s(s2 + 1)

=
A
s

+
Bs + C
s2 + 1

where A = 1, B = −1, C = 0.

MTHS2007 Advanced Mathematics for Engineers 36



Therefore

ȳ =

(
1
s
−

s
s2 + 1

)
(1− e−2s).

Now invert ȳ(s). The factor in brackets can be inverted using the tables:

L−1
{
1
s
−

s
s2 + 1

}
= 1− cos t.

The term (
1
s
−

s
s2 + 1

)
e−2s

can then be inverted using the second shifting theorem, giving

L−1
{(

1
s
−

s
s2 + 1

)
e−2s

}
= [1− cos (t − 2)] H(t − 2).
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The full solution is

y(t) = 1− cos t − [1− cos (t − 2)] H(t − 2).

Since

H(t − 2) =

{
0 for t < 2

1 for t ≥ 2,

the solution can be written as

y(t) =


1− cos t for 0 < t < 2,

− cos t + cos (t − 2) for t ≥ 2.

Again, you can check that y obeys the ODE and the initial conditions.

MTHS2007 Advanced Mathematics for Engineers 38


