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The response of a single-degree-of-freedom 
system due to excitation in the form of a 
cosine wave is shown below

Section B
HARMONIC/FORCED EXCITATION OF 

SINGLE-DEGREE-OF-FREEDOM SYSTEMS
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There is an initial transient response that normally decays 
quickly.  This is followed by a steady-state sinusoidal 
response at the same frequency as the excitation.



Forced Versus Harmonic Vibration

Forced Vibration is when an alternating force or motion is 
applied to a mechanical system, for example when a machine 
shakes momentarily due to an imbalance. 

Harmonic Vibration is a type of Forced Vibration in which a 
force is repeatedly applied to a system. This is primarily what 
we will consider in this class.
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(i)  Solution of the Equation of Motion

( )t f  =z   K  +  z C  +  z M 

The complete solution for z(t) consists of 

❖ The solution to the Complementary Function or Transient Response

❖ The Particular Integral or Steady-State Response

The Complementary Function is simply the solution to the 

equivalent free vibration problem (f(t) = 0 from last week) 

considered last week and provides the initial transient 
response (z(t)TR)

The Particular Integral provides the steady-state part of the 
vibration that continues for as long as the excitation remains

In most cases, the steady-state response (z(t)SS)

is all we are interested in. This is what we will look at today.

( ) ( ) ( )SSTR tztz  tz     +=
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Complementary Function or 
Transient Response

0  =z   K  +  z C  +  z M 
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Particular Integral or 
Steady State Response

)(tf  =z   K  +  z C  +  z M 

( ) ( )trKtrC  =z   K  +  z C  +  z M rr +

tSt  S=z   K  +  z C  +  z M 2211 ωcosωcos +

Total Displacement is then 

( ) ( )αωcos   t    Z  tz SS +=

( ) ( ) ( )SSTR tztz  tz     +=
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Method 1 - Direct Substitution

Consider harmonic excitation of the form ( ) t  F  =  tf ωcos

For pure sinusoidal excitation, the response is also sinusoidal

❖ The response has the same frequency as the excitation, 
but the two are likely to have a phase difference

A suitable expression for the response is therefore

( ) ( )αωcos   t    Z  tz
SS

+=

❖ The amplitude of the vibration is Z

❖ a is the phase angle between response and excitation

(1)

The same mathematical approach can be extended

❖ to more complicated structures 

❖ to more general forms of excitation 

❖ to experimental testing and digital data analysis procedures

)(tf  =z   K  +  z C  +  z M 
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To find Z and a, substitute for z(t) and its derivatives in the equation 

of motion, expand the various trigonometric terms and equate the 

coefficients of cos wt and sin wt and solve for Z and a

Hence 

( )   C         M K 

F
  =  Z
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( )t f  =z   K  +  z C  +  z M 

( ) ( )αωcos   t    Z tz
SS

+=

( ) ( )αωcos2   t  Z   tz
SS

+−= w

( ) ( )αωsinω   t  Z    tz
SS
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The following substitution is suggested in the Year 2 Maths module

( ) ( ) ( )tBt A  tz
SS

ww cossin +=

( ) ( ) ( )tBt A  tz
SS

wwww sincos −=

( ) ( ) ( )tBt A  tz
SS

wwww sinsin 22 −−=

This is equally valid and results in the same solution. 

I recommend you use whichever one you find easier when expanding 
to other systems. But keep in mind that you will have to manipulate 

A and B to find Z and a, using these substitutions.
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( )t f  =z   K  +  z C  +  z M 
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( ) t   F    tf ωsin=

( ) ( )   t     Z tz 
SS

αωsin +=

Q What if the excitation had been ?

A Choose the substitution 

The expressions for Z and a are the same as before
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F

Since the steady-state response to sinusoidal excitation is also 
sinusoidal and with the same frequency as the excitation, the key 
parameters to be identified are the amplitude and phase angle

Instead of time waveforms, sometimes the amplitude and phase 
relationship between excitation and response is with a phasor 
diagram

Z

a
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Method 2 - Complex Algebra

This provides a mathematically convenient way of finding the 
amplitude and phase angle of the response and is the preferred 
method over the previously demonstrated “substitution” one.

The substitutions used are always the same 

( ) tFtf ωe i=
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Put (4)

where  Z* is COMPLEX

and

(5)

The same mathematical approach can be extended

❖ to more complicated structures (shown later)

❖ to more general forms of excitation

❖ to experimental testing and digital data analysis procedures

)(tf  =z   K  +  z C  +  z M 
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Substituting into the equation of motion, we get

( )  C      M K 

F
  Z

ω ω
2
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The Moodle site includes a help page on the complex number 
algebra needed for this module. I will also cover this in general 
in the following next slides.
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Unfortunately, the complex number expressions you will derive are not 
generally in the form 

The general case for you is the form 

baZ i+=*

fe

dc
Z

i
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+

+
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Finding the amplitude of this ratio of complex numbers is easy.  It’s just 

Finding the phase lag is more difficult, since we first need to convert the 
expression into the form 
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To do this, we multiply both numerator and denominator by the 
complex conjugate of the denominator.  That is,
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The phase angle is then given by as before.
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So for our problem…
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( )
( ) C       M K
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In practice, notice that the imaginary part 

of  Z* is always negative
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The phase angle is also negative, meaning 
that the response LAGS behind the 
excitation
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Definition of FRF: Response / Unit Applied Force

(ii)   Frequency characteristics of the response

To see how the excitation frequency affects the response, we will 
consider the Frequency Response Function (FRF)

Start with the general form of the equation of motion

( )t f  z   K    z C    z M =++ 

Dividing by M and noting that  ω γ2 n     
M

C
= we get

( )
M

tf
  z      z    z nn =++ 2ωωγ2 
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Magnitude can then be written as

…and phase angle can then be written as

Note: These are equivalent to equations 2 and 3 found
previously, just with different terms (and dividing
equation 2 by F). You can prove this by substituting in
equations from last week’s lecture yourself.
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Damping ratio

At low frequencies, the phase angle is approximately zero

It drops by 180º as the system passes through resonance
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See Web Links on MM2DYN Moodle site

www.kettering.edu/~drussell/Demos/SHO/mass-force.html

http://www.kettering.edu/~drussell/Demos/SHO/mass-force.html
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https://www.youtube.com/watch?v=aZNnwQ8HJHU

Beam vibration.ppt
https://www.youtube.com/watch?v=aZNnwQ8HJHU

