Overview of Beam Vibration

- Given a generalized beam we wish to solve for
 - Natural Frequency ω_{nr}
 - Where **r** is the frequency number (1, 2, 3, ...)
 - Mode shapes associated with specific values of

 ω_{nr}

Essentially we are looking for the vertical displacement,
 y, for any given point along the beam, x

From previous experience we know then that we need to find a generalized equation

$$[Z]{C} = \{0\}$$

- Where det[Z] = 0 will give us ω_{nr}
- Solving the solution vector $\{C\}$ at $\omega_{\rm nr}$ will define the mode shapes
- To do this you need a generalized equation for vertical displacement, y, as a function of distance along the beam, x, and time, t.

• For free vibration at a natural frequency, the motion of each point on the beam will be sinusoidal, but the amplitude of vibration will vary along the length

• Substitution of $y(x,t) = Y(x) \cos \omega t$ into $EI \frac{\partial^4 y}{\partial x^4} = -\rho A \frac{\partial^2 y}{\partial t^2}$

 $V(x) = C_1 \sin\lambda x + C_2 \cos\lambda x + C_3 \sinh\lambda x + C_4 \cosh\lambda x$ (7)

$Y(x) = C_1 \sin\lambda x + C_2 \cos\lambda x + C_3 \sinh\lambda x + C_4 \cosh\lambda x$

- This results in a generalized equation for displacement of *y* at any given point along the beam, *x*, for a given frequency of vibration (contained in λ)
- HOWEVER, this contains 4 unknowns (C_1 , C_2 , C_3 and C_4) and you will therefore need a minimum of 4 equations to solve for them

– Boundary conditions must be used!!!

Descriptive terms	Diagrammatic	Boundary conditions		
Built-in clamped encastré		$y = 0 \frac{\partial y}{\partial x} = 0$		
Simple support hinged pinned		y = 0 $M = 0 \therefore \frac{\partial^2 y}{\partial x^2} = 0$		
Free		$M = 0 \therefore \frac{\partial^2 y}{\partial x^2} = 0$ $S = 0 \therefore \frac{\partial^3 y}{\partial x^3} = 0$		
Massless slider		$\frac{\frac{\partial y}{\partial x} = 0}{S = 0} \therefore \frac{\frac{\partial^3 y}{\partial x^3} = 0}{\frac{\partial^3 y}{\partial x^3}} = 0$		

You will therefore need to partially differentiate (7)

$$Y(x) = C_1 \sin\lambda x + C_2 \cos\lambda x + C_3 \sinh\lambda x + C_4 \cosh\lambda x$$
 (7a)

several times with depending on what boundary conditions you have

$$\frac{dY}{dX} = C_1 \lambda \cos\lambda x - C_2 \lambda \sin\lambda x + C_3 \lambda \cosh\lambda x + C_4 \lambda \sinh\lambda x$$

$$\frac{d^2Y}{dx^2} = -C_1 \lambda^2 \sin\lambda x - C_2 \lambda^2 \sin\lambda x + C_3 \lambda^2 \sinh\lambda x + C_4 \lambda^2 \cosh\lambda x$$

$$\frac{d^3Y}{dx^3} = -C_1 \lambda^3 \cos\lambda x - C_2 \lambda^3 \sin\lambda x + C_3 \lambda^3 \cosh\lambda x + C_4 \lambda^3 \sinh\lambda x$$

Example 3 Cantilever (Clamped-pinned) Beam

1. Boundary conditions

The boundary conditions are

Clamped end at
$$x = 0$$
, $Y = 0$ and $\frac{d Y}{d x} = 0$
Pinned end at $x = L$, $Y = 0$ and $\frac{d^2 Y}{d x^2} = 0$

Using these conditions with the previous equations results into the previous 4 equations

Hence, at
$$\mathbf{x} = \mathbf{0}$$

$$Y(0)_{x=0} = C_1 \times 0 + C_2 \times 1 + C_3 \times 0 + C_4 \times 1 \text{ (7a)}$$

$$= C_2 + C_4 = 0$$

$$\left(\frac{\mathrm{d}Y}{\mathrm{d}x}\right)_{x=0} = \lambda C_1 \times 0 - \lambda C_2 \times 1 + \lambda C_3 \times 0 + \lambda C_4 \times 1 \text{ (7b)}$$

$$= -\lambda C_2 + \lambda C_4 = 0$$

and at x = L

(7a) $Y(x)_{x=L} = C_1 \sin\lambda L + C_2 \cos\lambda L + C_3 \sinh\lambda L + C_4 \cosh\lambda L = 0$

$$\left(\frac{\mathrm{d}^2 Y}{\mathrm{d}x^2}\right)_{x=L} = \left[-\lambda^2 C_1 \sin\lambda L - \lambda^2 C_2 \cos\lambda L + \lambda^2 C_3 \sinh\lambda L + \lambda^2 C_4 \cosh\lambda L = 0\right]$$

YOU NOW HAVE 4 EQUATIONS WITH 4 UKNOWNS!!!!

2. Assemble into matrix form

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & -\lambda & 0 & \lambda \\ \sin \lambda L & \cos \lambda L & \sinh \lambda L & \cosh \lambda L \\ -\lambda^{2} \sin \lambda L & -\lambda^{2} \cos \lambda L & \lambda^{2} \sinh \lambda L & \lambda^{2} \cosh \lambda L \end{bmatrix} \begin{bmatrix} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} (7a)$$
(7b) (7b) (7c)

$$[Z]{C} = \{0\}$$

3. Solving det[Z] = 0 gives the Frequency Equation and its roots will give ω_{nr} contained in λ_r

• This is complicated so we have given you the resulting Frequency Equation for a number of different beam types on **page 5** of your notes

$$\tan \lambda L - \tanh \lambda L = 0$$
$$\tan \lambda_r L - \tanh \lambda_r L = 0$$

• But this is still difficult to solve, so we give you the numerical solutions

Numerical values of roots $\lambda_r L$ of frequency equations

r	1	2	3	4	5	>5
Pinned-pinned	π	2 π	3 π	4 π	5 π	Γ π
Clamped- clamped & free-free	4.730	7.853	10.996	14.137	17.279	≈ (<i>r</i> + 0.5) π
Clamped-pinned & free-pinned	3.927	7.069	10.210	13.351	16.493	≈ (<i>r</i> + 0.25) π
Clamped-free	1.875	4.694	7.855	10.996	14.137	≈ (<i>r</i> − 0.5) π

Selecting the values of $\lambda_r L$ from the above table for the beam of interest, the natural frequencies can be found from equation (5). That is:

$$\omega_{nr} = \frac{(\lambda_r L)^2}{L^2} \sqrt{\frac{E I}{\rho A}}$$

To solve for the mode shapes at a given natural frequency, ω_{nr} with r=1,2,3,..., remember that you have 4 equations with 4 unknowns (C₁, C₂, C₃ and C₄)

$$C_{2}+C_{4}=0$$

$$-\lambda_{r}C_{2}+\lambda_{r}C_{4}=0$$

$$C_{1}\sin\lambda_{r}L+C_{2}\cos\lambda_{r}L+C_{3}\sinh\lambda_{r}L+C_{4}\cosh\lambda_{r}L=0$$

$$-\lambda_{r}^{2}C_{1}\sin\lambda_{r}L-\lambda_{r}^{2}C_{2}\cos\lambda_{r}L+\lambda_{r}^{2}C_{3}\sinh\lambda_{r}L+\lambda_{r}^{2}C_{4}\cosh\lambda_{r}L=0$$

- You also have the table for numerical values of $\lambda_r L$
- Finally you have the equations to relate these to λ_r

$$\omega_{nr} = \frac{(\lambda_r L)^2}{L^2} \sqrt{\frac{E I}{\rho A}} \qquad \Longrightarrow \qquad \lambda_r^4 = \frac{\rho A \omega_{nr}^2}{E I}$$

- You should be able to solve these for the constants C₁, C₂, C₃ and C₄ at given natural frequencies (r=1,2,3,...)
- Your amplitude of displacement for any given point along the beam, Y(x), at a given frequency is then back to the general equation (7) from before

$$Y(x) = C_1 \sin\lambda_r x + C_2 \cos\lambda_r x + C_3 \sinh\lambda_r x + C_4 \cosh\lambda_r x$$

 Solving this at various points along the beam will then give you the mode shape of the beam at that frequency