### MM2MS3 Mechanics of Solids 3 Exercise Sheet 4 – Deflection of Beams

- 1. Derive expressions for the deflection and slope of the tip of a cantilever beam, length *L*, which carries:
  - (a) A point force, *P*, at the tip
  - (b) A point couple,  $M_o$ , at the tip
  - (c) A uniformly distributed load, w per unit, across its entire length

The second moment of area of the cross-section is  $Im^4$  and the Young's modulus of the material is EMPa.

[Ans: a)  $\frac{dy}{dx} = \frac{PL^2}{2EI}$  &  $y = -\frac{PL^3}{3EI}$  b)  $\frac{dy}{dx} = -\frac{M_oL}{EI}$  &  $y = \frac{M_oL^2}{2EI}$  c)  $\frac{dy}{dx} = \frac{wL^3}{6EI}$  &  $y = -\frac{wL^4}{8EI}$ 

2. Figure Q2 shows a simply supported beam carrying two concentrated loads at the positions indicated. Given that the beam has a rectangular cross-section as shown, calculate (a) the deflection of the beam at a position 3m from the left hand end (b) and at a position 5m from the right hand end. Assume  $E_{steel} = 200GPa$ .



All dimensions in meters, P = 10kN

### Fig Q2

[Ans: a) -130.5mm, b) -178mm]

3. Find (a) the slope at point A and (b) the deflection at point B of the beam shown in Figure Q3. Assume a Flexural Rigidity, *EI*, of 4MNm<sup>2</sup>.



All dimensions in meters, w = 10kN/m

#### Fig Q3

[Ans: a) -4.72 x 10<sup>-3</sup>rad, b) -10mm]

# University of Nottingham Department of Mechanical Engineering

# MM2MS3 Mechanics of Solids 3 Exercise Sheet 4 – Deflection of Beams

4. Determine (a) the slope and (b) the deflection at the left hand end of the beam shown in Figure Q4. Assume a Flexural Rigidity, *EI*, of 16.65MNm<sup>2</sup>.



All dimensions in meters



[Ans: a)  $3.62 \times 10^{-3} rad$ , b) 6.32mm upwards]