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7 Asymmetrical Bending

Learning Summary

By the end of this section you should have learnt,

1.

Know that an asymmetric cross-section, in addition to its 2" moments of area
about the x and y axes, Ix and |y, possesses a geometric quantity called the Product
Moment of Area, lyy, with respect to these axes (knowledge);

Be able to calculate the 2" moments of area and the product moment of area about
a convenient set of axes (application);

Know that an asymmetric section will have a set of axes at some orientation for
which the product moment of area is zero and that these axes are called the
Principal Axes (knowledge);

. Know that the 2" moments of area about the principal axes are called the principal

2"d moments of area (knowledge);

Be able how to determine the 2" moments of area and the product moment of area
about any oriented set of axes, including the principal axes, using a Mohr’s circle
construction (application);

Understand that it is convenient to analyses the bending of a beam with an
asymmetric section by resolving bending moments onto the principal axes of the

section (knowledge);

. Be able to follow a basic procedure for analysing the bending of a beam with an

asymmetric cross-section (application).

71

Introduction

M

The beam bending equation, _ZEZE, has been derived and is generally used to
1

y R

determine stresses in a beam with a symmetrical cross-section. The symmetry is usually

about an axis perpendicular to the neutral axis of the section. For a section where this

symmetry does not apply, i.e. asymmetric sections, a complication arises, making bending

analysis more difficult. In these cases, applying a bending moment will, in general, result

not only in bending about that axis but also in simultaneous bending about the
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perpendicular axis i.e. there is an interaction effect. To analyse such sections we
introduce a new geometric quantity called the Product Moment of Area and this leads to
the concept of Principal 2" Moments of area and Principal Axes for the section. These
are axes for which the Product Moment of area is zero and the above interaction effect
during bending does not occur. Thus, it is convenient to analyse the bending of
asymmetric sections about these axes. In this section, we will look at the theory behind
this effect and develop a general procedure for dealing with asymmetrical bending

situations.

7.2 Second moments of area of a complex shaped cross-section

7.2.1 2nd Moments of Area about Parallel Axes

<V

<V

Figure 7.1. Arbitrarily shaped cross-section

Consider an arbitrary shaped cross-section, as shown in Figure 7.1. The centroid of the
area, C, is at the origin, O, of the O-x-y axes set. A parallel axes set, O-x-y, also exists,
distance a and b from the O-x-y axes set, as shown in the figure. The centroid of area, C,

is positioned at co-ordinates (x,y’) = (a,b) in this parallel axes set.
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We know that the 2" moments of area, Ix and Iy, of the section with respect to the x and
y axes are given by,
1, :Jysz and [ =jx2dA
A

A

i.e. the product of an element of area, dA, and its distance squared from the particular
axis (x ory), integrated over the full cross-sectional area, A.

The Parallel Axis Theorem allows the calculation of the 2" moments of area, I, and 1,

, With respect to the x and y axes as follows,

I, =1_+Ab [1]
and
1,=1 +4d* [2]

I, and I jare the 2" moments of area about a set of axes through the centroid and are
always the minimum 2" moments. 1. and I, will always be greater because the second

terms in equations [1] and [2] are always positive as the distances between the axes, a

and b, are squared.

7.2.2 The Product Moment of Area

We now introduce a new quantity, the product moment of area, lxy, which is defined as,

I, =[xyda

A

lxy is the summation of the elements of area multiplied by the product of their co-ordinates.
We can now develop the parallel axis theorem for the product moment of area as follows,
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I, :jx'y'dA =j(x+a)(y+b)dA
A A
= [xydd+af ydA+b[xda+ab|da
A A A A

but, IydA and J'di are both zero because the origin of axes Oxy is at the centroid of
A A

area, C . Thus,

1, =1, +ab4 [3]

This is the Product Parallel Axis Theorem. Again, I, is the product moment of area

about a set of axes through the centroid. In this case, 7 .., can be either positive or
xy

negative, depending on the signs of a and b.

7.2.3 Principal 2" Moments of Area

Equations [1], [2] and [3] can be used to plot a Mohr’s circle as shown in Figure 7.2. 2"
moments are plotted on the x-axis and the product moments are plotted on the y-axis
[note that the y-axis for the circle is positive upwards, unlike Mohr’s circle for stress which

is positive downwards for shear].

Product

A (I, 1)

Ixy
/
|Q Iv C 29 |P >

Q P 2" Moment

Figure 7.2. Mohr’s Circle
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Point A on the circle has co-ordinates which correspond to the first 2" moment and the
product moment, i.e. (Ix, lxy). Point B on the circle has co-ordinates which correspond to
the second 2" moment and the negative product moment, i.e. (ly, lyx=-lx). These two

points enable the circle to be drawn.

The centre of the circle, C, and radius, R, are given by,

I +1 4
Centre C = Xzy 41

and

7 1\ [5]
Radius R = [ al yJ +1°
2 Xy

The points P and Q on the circle correspond to the Principal Planes for which the product
moment of areas are zero and the 2nd moments are the Principal 2" Moments of Area,

Il and la. Their magnitudes are given by,
Irp = Centre + Radius
and
lo = Centre — Radius

where the centre and radius are given by equations [4] and [5].

Thus knowing Ix, I, and Iy, The principal 2" moments of area, Ip and lq, can be

determined.

The angle of the principal axes with respect to the x-y axes is the angle 6, where 20 is

shown in Figure 7.2 and is given by,

sin260 = ==
R
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. I
or alternatively t4,20 = a4

1-1,
2

7.3 Symmetric Sections

(—x X y)dA (x x y)dA

Figure 7.3. Symmetric section

Figure 7.3 shows a section where one axis (the y-axis in this case) is an axis of symmetry.
The sum of the contributions to the product moment of area from elements of area, dA,
on opposite sides of the axis of symmetry will cancel out because of the change of sign
of the x co-ordinate. Thus, in general, if a section has an axis of symmetry, then Iy is zero.

7.4 Key points about the Mohr’s circle for 2" moments of area

1. The +ve upward direction for the product moment ensures that rotation in the
Mohr’s circle has the same sense as the rotation of the axes in space.

2. Ip and Iq are both +ve.

3. If Ip = Iq, all product moments are zero and all axes in all directions are principal

axes e.g. this is the case for a circular section.
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4. The sign of the product moment is important. Ixy = J'xydA is associated with the x-
A

axis and can be +ve or —ve. The product moment associated with the y-axis is lyx

= 'Ixy.

7.5 Summary of procedure to calculate the Principal 2"¥ Moments of Area and the
directions of the Principal Axes

1. Divide the cross-section into subsections for which their centroid of areas and 2™

moments of area about their own axes can be determined.

2. Choose a convenient set of orthogonal axes with its origin at the centroid of the full

cross-section.

3. Use the parallel axis theorem to determine the 2" moments of area and the product

moment of area for the full cross-section.

4. Use a Mohr’s circle construction to determine the Principal 2"® Moments of Area
and the directions of the Principal Axes.
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7.6 Worked Example — Principal 2" Moments of Area
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Figure 7.4. Worked example cross-section

Figure 7.4 shows an asymmetric angle cross-section. Determine:

(a) the Principal 2" Moments of Area

(b) the directions of the Principal Axes

The section is divided into two rectangular subsections 1 and 2.

Position of the Centroid:

Total Area = 51x10 + 54x10 = 1050 mm?

Taking moments of the areas about the datum AA,
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1050xy =(51x10)x5+(54x10)x37
Sy =21.46 mm

Taking moments of the areas about the datum BB,

1050xx = (51%x10)%x25.5+(54x10)x5
o X =14.96 mm

2"d Moments of Area about a convenient set of axes:
The x and y axes are drawn as a convenient set of axes through the centroid.

Using the parallel axis theorem,

1x10° 10 x 54°
1xv:[5 ;0 +51><10><16.462J+( 0;5 +10><54><—15.542j

=404,051 mm*

1 1’ 4x10°
Iy,:( Orzs +10><51><10.542J+[5 ;(20 +54x10x—9.962]

= 225,268 mm"*

And the product parallel axis theorem,

1., =(0+51x10x10.54x16.46)+ (0 + 54 x 10 x (—9.96 ) x (—15.54)
=172,059 mm*

Note that, in the product moment of area calculation above, the product moment of each
subsection about its own axis is zero due to the symmetry of each subsection. It is also
important that the correct sign for the co-ordinates of each subsection centroid with
respect to the full cross-section centroid are taken. Thus, for subsection 1, the co-
ordinates are both positive (10.54 and 16.46), while for subsection 2, they are both
negative (-9.96 and -15.54).
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Mohr’s Circle:

A Mohr’s circle can now be drawn to represent the axes about which Iy, I, and Ixy act, as

shown in Figure 7.5. The centre and radius are calculated as follows,

I.+1, .
Centre C = — 2 Y =314,659 mm

I, -1, 2 2 4
Radius R = - 5 +1,,” =193.895 mm

Product

B R . A (404,051, 172,059)

2" Moment

(225,268, -172,059)

Figure 7.5. Worked example Mohr’s circle

Principal 2" Moments of area:

The principal 2" moments of area can now be determined from the circle as follows,
lp = C + R = 508, 554 mm*
lo = C - R =120, 764 mm*

and the angle, 8, of the principal axes with respect to the x-axis is given by,

Loy 172,059 _ 0
R 193895
50=31.27°

sin20 = 887
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From the Mohr’s circle it can be seen that the principal axis 1 i.e. the p-axis is 31.27°
clockwise from the x-axis. The principal axes can now be drawn on a sketch of the element

as shown in Figure 7.6.

Y 4 /‘Q
1/

C

v

0=31.27°

Figure 7.6. Worked example schematic solution

7.7 Bending of beams with asymmetric sections

Figure 7.7 shows an arbitrary cross-section of a beam subjected to a bending moment,
M, acting at an angle 6 to the x-axis. The origin of the x-y axes coincides with the centroid
of the section. The bending moment has two components, Mx and My, as shown, acting
about the x-axis and y-axis respectively. [note that the bending moment and its
components are drawn in vector form with a double arrow head. The right hand screw

rule defines the sense of each bending moment component as shown in the figure]

Assume that bending takes place only about the x-axis i.e. O-x is the neutral axis. Then,
the bending stress, o, is proportional to the distance, y, from the neutral axis, or
alternatively,

Q
1l

cy

where c is an arbitrary constant
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NA

Figure 7.7. Arbitrary cross-section of a beam subjected to a bending moment, M

The resultant moment about the x-axis is given by the sum of moments of the forces acting
on each elemental area in the cross-section. In the limit, this sum can be written as an

integral as follows,
M, =[oydd
A

:Ic.y.ydA
A

"M, =l [6]

where Iy = 2" moment of area about the x-axis

But c=oly

which is the beam bending equation as expected.

However, there is also a resultant moment about the y-axis, as follows,
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M, = —I o.xdA
A

= —j c.y.xdA
A

Mo =—cl [7]

y Xy

where [ = J'xydA is the Product Moment of Area

[note the —ve sign arising because a positive stress results in a —ve moment about the y-

axis]

Thus, in general, a moment has to be applied about the y-axis as well as the x-axis to
produce bending about the x-axis only. A +ve moment is required about the y-axis to
counterbalance the —ve moment set up by the stresses arising from My. This is not the

case if Ixy is zero i.e. for sections which are symmetric about the y-axis.
. . 2 2
To ensure bending about the x-axis only, a resultant moment A7 = /Mx +M, must be

M
0=tan™ [—yJ
M)C

- zan—l[ﬁj (from equations [6] and [7])
1

pY

applied at an angle, 6, given by,

The moment is only applied about the x-axis when l,y=0.

Figure 7.8 illustrates the effect for a z-section. If a bending moment is applied about the
x-axis only, then the stresses in the flanges will create a resulting moment about the y-
axis. Consequently, bending will take place about both the x- and y- axes. This is a

consequence of lxy not being zero for this asymmetric section.
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Tensile

M,
P —>

Compressive

Figure 7.8. Z-section diagram

To avoid this moment coupling effect, it is usually convenient to solve bending problems
by considering bending about the Principal Axes of a section for which the Product

Moment of Area is zero.

7.8 Solving asymmetrical bending problems

Consider the arbitrary asymmetric section shown in Figure 7.9(a). O is the centroid and
O-P and O-Q are the Principal Axes of the section. The principal axes are inclined at an
angle 06 to the x-y axes. Components of an applied moment M, i.e. Mx and My, act about
the O-x and O-y axes respectively. Firstly, My and My are resolved onto the principal

directions, as illustrated in Figure 7.9(b), giving,

Mp = MxcosB + Mysin@ and Mg = -Mxsin® + Mycos6
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M
a P My a
)
NA 0 > M,
M, X i
0
M
(a) (b)

Figure 7.9. Arbitrary section and principal axes

We can now calculate the total bending stress, oy, at any position, (P, Q), which arises

from these two bending moment components and is given by,

M,Q M,P [8]
-, I

Oy
0
[note that when P and Q are both +ve, i.e. in the first quadrant of the P-Q axes set, a +ve

Mp gives rise to a +ve bending stress while a +ve Mq gives rise to a —ve bending stress]

The maximum stress in the section will occur at the extreme distance from the Neutral
Axis. We therefore need to determine the position/orientation of the neutral axis which
can be found by setting the bending stress, i.e. equation [8], to zero. Thus, the neutral
axis occurs where,

. _MP‘Q MQ.P_
o, 1,
MP-Q:MQP
I, I,
Q_Mo I
P
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This value for g/p defines the angle, a, of the neutral axis, with respect to the p-axis,
shown in Figure 7.9(a), as follows,

9
a=tan [QJ =tan”' [—MQ 1r J o]
P M1,

Equation [8] can therefore be used to determine the magnitude of the stress at any
position (p,q) and equation [9] can be used to determine the orientation of the neutral axis
and hence the position of the maximum stress which is at the extreme distance from the

neutral axis.

7.9 Summary of the procedure for solving asymmetrical bending problems

1. Determine the Principal Axes of the section, P and Q, about which I, = 0.

2. Consider bending about the principal axes, i.e. resolve bending moments onto
these axes.

3. Knowing Mp, Mq, Ip and lq, determine the general expression for the bending stress

at position (P, Q) as follows,

MP'Q MQ'P
o, = -
I, I,
4. Determine the angle of the neutral axis with respect to the P-axis as follows,
M,.1
aztan_l[gjztan_l et

P M,.1,

5. Evaluate the bending stress at any position in the section including the extreme

positions from the neutral axis which give the maximum bending stresses.

7.10 Worked Example — Asymmetrical Bending
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Figure 7.10. Worked example cross-section

The angle section, shown in Figure 7.10, with principal axes and principal 2" moments of
area indicated, is subjected to a bending moment of 300Nm about the x-axis. Determine:

(i) the position/orientation of the neutral axis

(ii) the bending stresses at positions a, b and c

Resolving the applied moment:

31.27°

Me

Figure 7.11. Components of applied bending
Referring to Figure 7.11(a), the components of the applied bending in the p and q

directions are,
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Mp = Mcos(31.27) = 0.855M

Ma = Msin(31.27) = 0.519M

The general expression for bending stress at position (p,q) is,

M,Q M,P
o, = -
o, 1,
_ 0.855x300x10°xQ  0.519x300x10° x P
508,554 120,764

=0.50420 — 1.2894P

18

Note that for P and Q in mm, this expression gives bending stress in N/mm?i.e. MPa.

Orientation of the neutral axis, a, with respect to the P-axis:

a=tan”’ (Q] =tan™ M
P MP.IQ

1 1.2894
=tan
0.5042
= 68.64°

j =tan™'(2.558)

Orientation of the neutral axis with respect to the x-axis = 68.64 — 31.27 = 37.37°. These

orientations are illustrated in Figure 7.10.

Bending stresses:

To determine the bending stresses at a, B and ¢, we need the P and Q co-ordinates of

these points. Referring to Figure 7.11, the general co-ordinate transformation equations

for a set of axes, P-Q, inclined at a clockwise angle, 6, from another set, x-y, are (as

shown in Figure 7.12),

P =xcosB -ysin@ and Q =xsinB + ycos6
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Q

P=Px—Py
Q=Qx+Qy

Figure 7.12. Transformation from axis set x-y to axis set P-Q

For this problem, the P-axis is inclined at 31.27° clockwise to the x-axis. Thus,
0 = 31.27° and the above transformation equations become,
P =0.8557x — 0.5191y

and Q=0.5191x + 0.8547y

We can now draw a table for calculating the co-ordinates of A, B and C as follows,

Position X y p q

a -14.96 21.46 -23.92 10.88
b 36.04 21.46 19.66 37.05
c -14.96 -42.54 9.3 -44 .12

and the stresses follow from the general equation ¢, =0.50420Q —1.2894P, as follows,
ata: 0. = 36.33MPa
atb: o, =-6.67MPa

atc: oc =-34.24MPa

19



