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3 Thermal Stress and Strain 
 

Learning Summary 

1. Recall that thermal strains arise when a change in temperature is applied to an 

unconstrained body (knowledge); 

2. Recognise the cause of thermal strains and how ‘thermal stresses’ are caused by 

thermal strains (comprehension); 

3. Solve problems involving both mechanical and thermal loading (application). 

 

3.1 Introduction 

Stresses and strains usually arise when mechanical loads are applied to a system.  

However, they can also exist when no mechanical loading is present.  A typical example 

of this is when a temperature change occurs. 

 

Changes of temperature in a body cause expansion/contraction.  This phenomenon is 

quantified by the coefficient of thermal expansion, α.  Some typical values of thermal 

expansion coefficient for some common engineering materials are presented in Table 1.  

For isotropic materials, α is the same for all directions. 

 

Table 3.1 

Material 
Coefficient of 

Thermal Expansion, α, [°C-1] 

Concrete 10 x 10-6 

Steel 11 x 10-6 

Aluminium 23 x 10-6 

Nylon 144 x 10-6 

Rubber 162 x 10-6 
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Uniform temperature change throughout an unrestrained body produces uniform strain 

but no stress, i.e. there is free expansion/contraction. 

 

For a bar of length l, subjected to a temperature change ΔT, the change in length !lthernal 

due to the temperature change is given by: 

 

 

The thermal strain due to this length change can be determined as follows: 

 

 

Using the principle of superposition, which states that:  

 

thermal extensions can simply be added to elastic (mechanical) extensions to give the 

total extension by: 

 

 

or, for an axial member: 

 

 

However, if the body is restrained, or the temperature is not uniform, thermal stresses are 

produced in the body. 

  

 Q(,*-.#$/ = (RΔ5 (3.1) 

 T,*-.#$/ =
Q(,*-.#$/

( = (RΔ5
( = RΔ5 (3.2) 

 U5ℎ"	&)&+(	"WW"$&	)W	$)XY,%"7	()+7Z	+[[(,"7	&)	+	Y)7\ ]

=^U5ℎ"	"WW"$&Z	)W	&ℎ"	,%7,_,78+(()+7Z	+[[(,"7	Z["+#+&"(\ ] 

 

(3.3) 

 Q(,0,$/ = Q(-/$1,23 + Q(,*-.#$/ (3.4) 

 Q(,0,$/ =
`(
9a + (RΔ5 (3.5) 
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3.2 Resistive Heating of a Bar 

The bar shown in Figure 2.1 is subjected to a temperature rise of ΔT and restricted from 

expanding by constraints at each end. 

 

 
Figure 3.1 

 

Since the bar cannot extend, applying Equation (3.4): 

 

 

or alternatively: 

 

 

Cancelling l in Equation (3.7) and rearranging to find the force F gives: 

 

 

and the stress in the bar, : is: 

 

 

  

 Q(,0,$/ = Q(-/$1,23 + Q(,*-.#$/ = 0 (3.6) 

 Q(,0,$/ =
`(
9a + (RΔ5 = 0 (3.7) 

 ` = −9aRΔ5 (3.8) 

 : = `
9 = −aRΔ5 (3.9) 
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3.3 Compound Bar Assembly 

A compound bar assembly consisting of one aluminium and one steel bar of the same 

dimensions between two rigid end plates which are able two slide without friction is shown 

in Figure 3.2. 

 

If the whole assembly is subjected to a temperature change ΔT will the bars be in tension 

or compression? 

 

 
Figure 3.2 

 

If we consider this ‘intuitively’, because of compatibility the extension of the bars must be 

identical, i.e.: 

 

 

Referring to Table 3.1, we can see that αalu > αsteel therefore the aluminium bar will want to 

extend more than the steel bar but is constrained from doing so due to the rigid end blocks 

attached to the steel bar.  This means that the aluminium bar will be in compression.  

The reverse is true of the steel bar, it wants to extend less than the aluminium bar but the 

rigid end blocks attached the aluminium bar forces it to extend further, therefore the steel 
bar is in tension.  This is shown schematically in Figure 3.3, where the free expansion 

is compared to the constrained expansion. 

 

We can consider an analytical solution to the same problem; again Equation (3.10) applies 

meaning that (from Equation (7)): 

 

 Q(1,--/ = Q($/4 (3.10) 
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Figure 3.3 

 

The equilibrium condition can be obtained from the FBD in Figure 3.4 as follows: 

 

 

 
Figure 3.4 

 

Substituting for Fsteel from Equation (3.12) into Equation (3.11) gives: 

 

 

and therefore: 

 

 1̀,--/(
91,--/a1,--/

+ (R1,--/Δ5 = $̀/4(
9$/4a$/4

+ (R$/4Δ5 (3.11) 

 1̀,--/ = − $̀/4 (3.12) 

 (Δ5(R1,--/ − R$/4) = $̀/4( U
1

9$/4a$/4
+ 1
91,--/a1,--/

] (3.13) 
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As αsteel < αalu this means that :alu < 0 i.e. the aluminium bar is in compression. 

 

If we consider that: 

 

 

Then: 
 

 

As αsteel < αalu this means that :steel > 0 i.e. the steel bar is in tension. 

 

3.4 Generalised Hooke’s Law in 3D 

To incorporate thermal effects in 3D we add a thermal strain (RΔ5) term to the normal 

strains in Hooke’s Law: 

 

 

 :$/4 = $̀/4

9$/4
= Δ5(R1,--/ − R$/4)
b 1a$/4 +

9$/4
91,--/a1,--/c

 (3.14) 

 9$/4:$/4 = −91,--/:1,--/ (3.15) 

 :1,--/ = −9$/4:$/491,--/
= − 9$/4

91,--/
Δ5(R$/4 − R1,--/)
b 1
a1,--/ +

91,--/
9$/4a$/4c

 (3.16) 

 

 
(3.17) 

 

 
(3.18) 

 

 
(3.19) 

  (3.20) 

  (3.21) 

 
 (3.22) 

T
E zyxx D++-= assnse ])[(1

T
E zxyy D++-= assnse ])[(1

T
E yxzz D++-= assnse ])[(1

Gxyxy /tg =

Gyzyz /tg =

Gzxzx /tg =
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where ΔT is the temperature at a point relative to some datum.  There is no change to the 

shear stress-strain relationship as for linearly elastic, isotropic materials; a temperature 

change produces only normal strains. 

 

By introducing these thermal strains into the generalised Hooke’s Law we can obtain 

solutions to thermal stress problems which are often very important in, for example, power 

and chemical plant, aeroengines and internal combustion engines (e.g. pistons and 

cylinder walls) etc. 
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3.5 Case 1:  An initially straight uniform beam 

 

 
Figure 3.5 

 

 

- Determine the deformations and stresses (small deformations) 

 

The temperature variation is (assumed) purely a function of y, i.e. ΔT  = ΔT (y). 

 

The coefficient of thermal expansion = α.  Axial force P, and pure bending, about the z-z 

axis, M, are also applied. 

 

σz,σy,τxz, and τyz= 0 because the cross-sectional dimensions are small compared with the 

length. 

 

Also τyz = 0, because M does not vary with x, (a constant value) 

 

3.5.1 Compatibility 

Remote from the ends, strain varies linearly with y, 

C
dx
dMS ==
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Where  is the mean strain (at y = 0) and R is the radius of curvature. 

 

3.5.2 Stress-strain 

From the generalised Hooke’s Law Equation (3.17) (as σy and σz are 0) 

 

 

Substituting Equation (3.23) into Equation (3.24) and rearranging for σx gives: 

 

 

3.5.3 Axial Equilibrium 

 

Substituting Equation (3.25) into Equation (3.26) gives: 

 

 

Multiplying out to give individual terms: 

 

 

however, ∫ \79 = 0
5

 because y is measured from an axis passing through the centroid, 

so Equation (3.28) reduces to: 

e

 

 
(3.23) 

 

 
(3.24) 

 

 
(3.25) 

 
 

(3.26) 

 

 
(3.27) 

 

 
(3.28) 
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d 

3.5.4 Moment Equilibrium 

 

Substituting Equation (3.25) into Equation (3.30) gives 

 

 

Multiplying out to give individual terms: 

 

 

By definition ∫ \)79 = e
5

 and ∫ \79 = 0
5

 as before, therefore Equation (3.32) reduces 

to: 

 

 

  

 
 

(3.29) 

 
 

(3.30) 

 

 
(3.31) 

 

 
(3.32) 
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3.5.5 Example 1 

A rectangular beam, width b and depth d has a temperature variation given by: 

 

 
Figure 3.6 

 

There is no restraint or applied loading (i.e. P = M = 0).  Obtain the stress distribution. 

 

Axial Force Equilibrium 
Recalling Equation (3.29) and inserting the temperature variation, axial force and 

considering a rectangular cross-section from the problem gives: 

 

 

Rearranging for the mean strain, T ̅gives: 

 

 

 
(3.34) 

 

 

(3.35) 
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And evaluating the integral: 

 

 

Gives: 

 

 

Moment Equilibrium 
With M = 0 we can obtain 1/R from the moment equilibrium (Equation (3.33)) but from 

symmetry we can see that (1/R) = 0. 

 

Stress Distribution 
Using Equation (3.25) and substituting in the expression for mean strain (Equation (3.38)), 

1/R and the temperature variation (Equation (3.34)) gives: 

 

 

Which reduces to: 

 

 

Evaluate Stress Distribution 
At y = 0, 
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Which gives: 

 

 

At y = ±d/2, 

 

 

Reduces to: 

 

 

And then: 

 

 

We can also evaluate the point at which the stress, σx = 0, i.e. when 6(
!

7!
= '

&
, from Equation 

(3.40) which gives: 

 

 

Or y = ±0.287d 

 

 
(3.41) 

 

 
(3.42) 

 

 

(3.43) 

 

 
(3.44) 

 

 
(3.45) 

 

 
(3.46) 

÷÷
ø

ö
çç
è

æ
-

´
D=

3
104

2

2

max d
TEx as

3
maxTE

x
D-

=
as

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-
÷
ø
ö

ç
è
æ

D=
3
12

4
2

2

max d

d

TEx as

÷
ø
ö

ç
è
æ -D=

3
11maxTEx as

3
2 maxTE

x
D

=
as

2

12
1 dy =



MMME2053 – Mechanics of Solids – Thermal Stress & Strain 39 

 

 

 

This is the stress distribution away from the ends.  At the ends, σx = 0 and there is a 

gradual transition between the two. 

 

 
Figure 3.7 
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3.5.6 Example 2 

A rectangular beam (again b x d), but with: 

 

And the constrained so that ε = 0 and 1/R = 0. 

 

Determine the stresses and restraints. 

 

 
Figure 3.8 

 

 

Axial Force Equilibrium 
Recalling Equation (3.29) and substituting in for the temperature variation: 

 

Evaluate the integral: 

 

 

Also,  

P = 0 ε = 0       ∴
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Moment Equilibrium 
Recalling Equation (3.31) and substituting in for the temperature variation and evaluating 

the integral: 

 

Also as 1/R = 0, this gives  

 

Stress Distribution 
Using Equation (3.25) with ε = 1/R = 0 

 

 

Substituting in for the temperature variation: 

 

 

 

At y = d/2, 

 

At y = -d/2 
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Evaluate Stress Distribution 
 

 
Figure 3.9 
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3.6 Case 2:  Thin cylinders 

Thin cylinders are in common use in power and chemical plant, e.g. pipes, pressure 

vessels, etc.  Often temperature variations are approximately linear through the thickness.  

Considering positions remote from the ends, flanges, etc. 

 

 
Figure 3.10 

 

It is convenient to consider the effect of the uniform temperature change and the 

temperature gradient separately.  If the cylinder is not restrained then the uniform 

temperature change causes overall dimensional changes, but no stress.  The stresses 

due to axial restraint are easily calculated. 

 

For the temperature gradient we have: 

 

 

where ΔTwall is the temperature difference across the wall.   

 

For a thin cylinder: 

 

 

 

 
(3.57) 

  (3.58) 
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Now using a cylindrical coordinate system and substituting in for σr: 

 

 

And 

 

 

Remote from the ends of the cylinder sections remain plane and circular.  Therefore, from 

compatibility considerations (with zero mean temperature change), the hoop and axial 

strains must both be zero.  Therefore: 

 

 

And 

 

 

Solving, gives 
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