
 

Approximate Methods 
MODULE: MMME2046 DYNAMICS & CONTROL 

 
 
 
Often the lowest natural frequency of a structure is the most important.  For example, if 

the 1st critical speed of a shaft is above its operating speed range, whirl is avoided.  It is 

often the case that the 1st mode gives the largest displacement for a given excitation. 

 
We will consider Rayleigh’s Method for estimating the lowest natural frequency. 
 
Section B then considers a method of creating single-degree-of-freedom approximations 
of more complex systems. 
 
 

A.   Rayleigh’s Method 

Lord Rayleigh observed that for an undamped system vibrating freely at one of its 
natural frequencies, energy is conserved so that 

Maximum Kinetic Energy = Maximum Strain Energy 
 
This is the basis for his method.  The strain and kinetic energies can be found for any 
structure provided we know the deflected shape (i.e., the mode shape).  Since we do not 
normally know the exact mode shape, it is necessary to make an estimate of it.  This is 
an important step since the accuracy depends on making a good guess. 
 

For systems with lumped mass and massless springs, the maximum kinetic for mass i is 
 
 
 
 

where Xi is the amplitude of vibration for mass i based on the assumed mode shape.   

 
The maximum strain energy in spring j is 
 
 
 
 
The totals for the complete system are given by summing the contributions of all the 
masses and all the springs.  Equating the strain and kinetic energies and re-arranging 

gives an expression for 2.  The result can also be calculated from the mass and stiffness 

matrices for the system.  That is 
 

 
 
 

where    is the assumed mode shape vector. 

 
 

 
 
 
 
 

  22
MAX ω

2

1
mass iii Xm  =  T   

   2

MAX lengthofchangemaximum
2

1
spring jk   = U j

    
    



M

K
T

T

2ω



 2 

Example 1  Two-degree-of-freedom System 
 
The instantaneous kinetic energy of mass 1 is  
 
 
If   then   
 
That is, the maximum velocity is  
 
 
Therefore, the maximum kinetic energy of mass 1 is 
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The instantaneous strain energy of a spring is 
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For the top spring, the instantaneous strain energy is  
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The maximum strain energy is 
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For both springs, 
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Equating Tmax and Umax, we get 
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If we can estimate the mode shape, we will have values of X1 and X2 that can be 

substituted into this equation.  Experience shows for the shape of the lowest mode of 
vibration will have all masses moving in phase with each other.  This is generally true of 
other structures too.  We therefore need to estimate the relative amplitude of the masses.  
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We analysed the two-mass problem previously, with m = 2 kg and 

k = 200 N/m.  For the lower natural frequency, we found that the two 

masses vibrated in phase with each other and that  

X 2  >  X 1 

 

A guess at values of of X1 and X2 that match this observation could be 

X 1 = 1 

X 2 = 2 

 

This gives a value for n of 1.007 Hz, which is an error of 2.3%; the 

exact value being 0.984 Hz. 
 
 
The static deflection shape is invariably a good estimate for the lowest mode shape. 
 
Here, noting that the bottom spring supports one mass, but the top spring carries the 
weight of both masses, the static deflection shape is 

X 1 =  

X 2 =  

 

This gives n = 0.987 Hz, which is an error of only 0.4%. 

 
Try using the exact mode shape.  You should find that it gives the exact answer. 
 
 
 
Because Rayleigh’s method imposes a deflection shape on the system, it effectively 
constrains it to vibrate in a different way to the true mode shape.  As a result, Rayleigh’s 
method will always give an over-estimate of the natural frequency (unless you happen to 
guess the exact mode shape). 

ExactRayleigh ωω   

 
The technique to adopt is to try several possible mode shapes.  The lowest of the 
predicted frequencies will be the most accurate. 
 
 
Rayleigh’s method for shafts and beams 
 
Rayleigh’s method can also be applied to shafts and beams.  In this case, the 
expressions for the maximum kinetic and strain energies are 
  
 
 
  
 
 
 
 
 

where  xY  is the mode shape function, which defines the amplitude of vibration of the 

shaft/beam along its length.  Non-uniform cross-sections (where A and I are functions of 

x) can also be analysed, as can systems of interconnected beams and systems that 

include discrete masses and springs.  In each case, we sum the contribution of each 
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element to the overall strain and kinetic energies. 
 

We need to estimate  xY  in order to evaluate the integrals. 

 
 
Example 1: Uniform Cantilever Beam 
 
For this, we know that the exact answer is   
 
 
The main criterion for choosing the mode shape is to ensure that it satisfies the 
displacement and slope conditions at the ends of the beam/shaft. 
 
 

 at x = 0.  The exact mode shape is: For a cantilever beam, 

 
 
 
 

It is impossible to guess this function, particularly when we don’t know the natural 

frequency (which is needed to work out the wavenumber,1). 
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Mode shape for the lowest mode of a uniform cantilever beam 

 
 
Choice 1: Quadratic function   
 
This satisfies the displacement and slope conditions at the clamped end and gives a 
shape that is similar to the actual mode shape (above). 
 
The maximum kinetic energy is given by 
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The maximum strain energy 
 
 
 
 
 
 
 
 
 
 
 
 
 
Equating gives  
 
 
 
Prediction is , which is significantly higher (27%) than the exact 
value. 
 
Choice 2: Static deflection shape 
  
 
 
 
 
Prediction is  ; an error of less than 1%. 
 
 
 
Choice 3: A trigonometric function 
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The trigonometric function is a good compromise. 

 Much better than simple polynomial 

 Not as good as the static deflection shape (which is generally the best estimate) 

 Can be found for different beams by inspection 
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Example 2:    Beams and Shafts with Added Masses 
 
 
 
 
 

The added masses don’t change the strain energy, but they add extra kinetic energy. 
 

 

For mass at  the maximum velocity is  

 

 

Contribution of mass r to the kinetic energy is   

 
 
These contributions need to be added to the kinetic energy of the shaft itself.  Hence, the 
total kinetic energy becomes: 
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Equations of Motion and Energy Methods 
 
Consider the simple single-degree-of-freedom system below.   
 

Using the approach based on Newton’s 2nd Law, the 
equation of motion is 
  

 
 

 or  0  =  x k  +  x m   (1)  

 
 

 
With no damping, energy is conserved so that at any instant, the sum of the kinetic and 
strain energies is constant.  We can therefore write 
  
 
 
 
 
Differentiation with respect to time gives 
 
 

or  0  =  x x k  +  x x m   

 
Cancelling the velocity terms gives the original equation of motion [equation (1)].   
 
This demonstrates that the equation of motion reflects the rates of change of the 
kinetic and strain energies of the system.  The Italian-born mathematician Joseph 
Lagrange showed that the equations of motion of a system (including damping) could be 
derived from energy expressions.  This approach is covered in detail in the Advanced 
Dynamics of Machines module. 
 
 

B. Single-degree-of-freedom Dynamic Models of Complex Systems 
 
The approach is based on the observation that if the total strain and kinetic energies 
of two different dynamic systems are identical, an exact analogue relationship 
will exist between the two systems.  Such systems are called Dynamically 
Equivalent Systems. 
 
In situations where the real system has many degrees of freedom, but only one mode of 
vibration is of interest, the concept provides a powerful method for producing an 
approximate single-degree-of-freedom model to describe that mode of vibration.  Not only 
are single-degree-of-freedom models easy to analyse, but examples in this module have 
confirmed that they can often give good predictions of the general behaviour of more 
complex systems.  We will consider only undamped systems here. 
 
The approximate model consists of a simple mass-spring system, in which the 
displacement of the mass represents the displacement of some chosen point on 
the real structure. 
 
Using the concept of dynamically equivalent systems, the mass and spring 
stiffness of the approximate model are chosen so that the maximum strain and 
kinetic energies of real and model systems are the same.   
 
To do this, we assume that the lowest mode of vibration is dominant and therefore defines 
the deformation pattern in the structure.  This is a good assumption if the system is 
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vibrating sinusoidally near its lowest mode of vibration, but can also work well in other 
cases.  An example of the latter was shown in the section on periodic excitation where the 
response of a 5-degree-of-freedom system was compared with that of an equivalent 
single-degree-of-freedom model.   
 
As with Rayleigh’s Method, the accuracy of the model relies on having a good estimate of 
the real structure’s mode shape. 
 
 

Example 1: Lumped mass system 

Objective: Find an approximate single-degree-of-freedom model to analyse the motion 
of the top mass of a 3-degree-of-freedom system. 

 
The first step is to establish the link between the displacement of the 
mass in the approximate single-degree-of-freedom model and some 
chosen point on the real system. In this case, the obvious choice is to 
link the displacement of the approximate model to the displacement 
of the top mass, x, since it’s the motion of this mass that we want to 
predict.  
 
However, since we are assuming that the motion of the real system is 
given by our chosen mode shape, not only does the approximate 
model predict the behaviour of the coordinate used as the link with 
the real system, but we can also work out the motion of the other 
coordinates since they are all linked by the assumed mode shape.  In 
this example, it means that once we’ve found x(t) we can get y(t) and 
z(t), since each will be related to x(t) in proportion to the mode shape 

 zyx :: . 

 
Continue the analysis on a blank sheet 
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Example 2: Forced response of a cantilever beam 
 
 

 
 
Objective: Use a single-degree-of-freedom model to estimate the steady-state response 

at the free end of a uniform cantilever beam due to a sinusoidal force with a 
frequency near the lowest natural frequency of the beam. 

 
There are two stages.  First, we set up the approximate model, then 
we use it to do the steady-state response calculation. 
 
In this case, we choose to link the displacement of the mass in the 
approximate model to the displacement at the free end of the 
cantilever.  In terms of the chosen displacement variables, 
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For steady-state, sinusoidal vibration, the link can be written as 

  tLYtZ ωcosωcos    or   LYZ   

 

To proceed, we need to choose an expression for  xY , the amplitude of vibration for the 

cantilever.  Two possibilities are considered. 
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This expression for  xY  is then used to calculate the maximum kinetic and strain energies 

in the beam.  By equating these to the equivalent expressions for the single-degree-of-
freedom model, we get the required mass and stiffness values. 
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This gives the mass for the approximate model to be LAm 2.0 .  Note that LA  is 

the mass of the beam. 
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Applying the natural frequency test to the approximate model, we find that 
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ω 21  , which is the same (poor) result obtained with Rayleigh’s Method using 

this choice for  xY . 

 

Choice #2: Static deflection shape,   )64( 2234 xLLxxCxY   

 

Linking this expression at Lx  with the coordinate for the approximate model, we get 
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Using this expression to calculate the mass and stiffness values for the model gives the 
following. 
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The natural frequency test in this case gives 
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result from the first choice, confirming that the static deflection shape is the better 
approximation.  

 

Forced response analysis 

Having established the single-degree-of-freedom model, we can now use it to estimate the 
steady-state response at the free end of the beam due to a sinusoidal force.   The equation 
of motion for the approximate model is: 
 

 t F  =z   k    z m   
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Note that since there is no damping in this model, the expression for 
*Z  is real. 

 
This meets the objective of finding the steady-state amplitude of the deflection at the free 
end of the cantilever.  However, since we have assumed that the deflected shape of the 

beam can be defined by the mode shape (that is, the function  xY ), the expression for 

*Z  can also tell us the vibration amplitude at any point along its length.  In the case of 
Choice #2, this gives: 
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