DYNAMICS AND CONTROL

CONTROL CONSOLIDATION 3

GENERAL INTRODUCTION – SESSION 3

- Second order systems and PID controllers additional material
- Routh Hurwitz worked examples
- Q&A

3 a) Velocity Feedback

The governing equation follows as:

$$[Ms^{2} + (C + K_{0}K_{v})s + K_{0}K_{4}]X(s) = K_{0}K_{4}X_{i}(s) - F_{R}(s)$$

$$s^{2} + 2\gamma\omega_{n}s + \omega_{n}^{2} = 0$$
 velocity feedback \rightarrow viscous damping

The Velocity lag ($F_{\rm R} = 0$) under ramp remains

$$e_{\rm ss} = \frac{[C + K_0 K_v]}{K_0 K_4} \Omega_x$$

• $\frac{V_i(s)}{K_4} = X_i(s)$

•
$$X(s) = \left(X_i(s) - \left(1 + \frac{K_{\nu}s}{K_4}\right)X(s)\right)\left(\frac{K_4K_0}{Ms^2 + Cs}\right)$$

•
$$\frac{X(s)}{X_i(s)} = \frac{K_4 K_0}{M s^2 + (C + K_V K_0) s + K_4 K_0} = \frac{\omega^2}{(s^2 + 2\gamma \omega s + \omega^2)}$$
 $\omega^2 = \frac{K_4 K_0}{M}$

Proportional and Derivative Control (P+D)

Notes:

- i) Damping increased without increasing power consumption (why?)
- ii) Overshoot is decreased
- iii) Derivative control has no effect on steady state error.

Proportional and Derivative Control (P+D) Steady state error for ramp input $\frac{\Omega}{s^2}$

• Take 5 – have a go ...

Proportional and Derivative Control (P+D) Steady state error for ramp input $\frac{\Omega}{c^2}$

Proportional and Derivative Control (P+D) Steady state error for ramp input $\frac{\Omega}{s^2}$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{s\Omega}{s^2} \frac{(Ms^2 + (C + KT_D)s + K) - K(1 + T_D s)s}{(Ms^2 + (C + KT_D)s + K)} = \frac{s\Omega(Ms^2 + Cs)}{s^2(Ms^2 + (C + T_D)s + K)}$$
Apply the limit:
$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{s\Omega(Ms^2 + Cs)}{s^2(Ms^2 + (C + KT_D)s + K)} = \frac{C}{K}$$

• Therefore differential control cannot completely remove the S-S error

Proportional and Derivative Control (P+D)

iv) Derivative action tends to amplify 'noise' in the system:

12

Proportional error is modified by adding an integral of error. This can also be carried out electronically.

Governing equation:

$$X(s) = \left(X_i(s) - X(s)\right) \left(Ks + \frac{K}{T_i}\right) \left(\frac{1}{Ms^3 + Cs^2}\right)$$
$$X(s) \left(1 + \left(Ks + \frac{K}{T_i}\right) \left(\frac{1}{Ms^3 + Cs^2}\right)\right) = X_i(s) \left(Ks + \frac{K}{T_i}\right) \left(\frac{1}{Ms^3 + Cs^2}\right)$$

Governing equation:

$$X(s)\left(1+\left(Ks+\frac{K}{T_i}\right)\left(\frac{1}{Ms^3+Cs^2}\right)\right)=X_i(s)\left(Ks+\frac{K}{T_i}\right)\left(\frac{1}{Ms^3+Cs^2}\right)$$

$$X(s)\left(Ms^{3} + Cs^{2} + Ks + \frac{K}{T_{i}}\right) = X_{i}(s)\left(Ks + \frac{K}{T_{i}}\right)$$

Step input:

$$X(s)\left(Ms^{3} + Cs^{2} + Ks + \frac{K}{T_{i}}\right) = \frac{1}{s}\left(Ks + \frac{K}{T_{i}}\right)$$

$$E(s) = X_i(s) - X(s) = \frac{1}{s} \left(1 - \frac{Ks + \frac{K}{T_i}}{Ms^3 + Cs^2 + Ks + \frac{K}{T_i}} \right)$$

Final value Theorem for step input:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \left(1 - \frac{Ks + \frac{K}{T_i}}{Ms^3 + Cs^2 + Ks + \frac{K}{T_i}}\right) = 1 - \left(\frac{\frac{K}{T_i}}{\frac{K}{T_i}}\right) = 0$$

Ramp input:

$$X(s)\left(Ms^{3} + Cs^{2} + Ks + \frac{K}{T_{i}}\right) = \frac{\Omega}{s^{2}}\left(Ks + \frac{K}{T_{i}}\right)$$

$$E(s) = X_i(s) - X(s) = \frac{\Omega}{s^2} \left(1 - \frac{Ks + \frac{K}{T_i}}{Ms^3 + Cs^2 + Ks + \frac{K}{T_i}} \right)$$

Final value Theorem for ramp input:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{\Omega}{s} \left(1 - \frac{Ks + \frac{K}{T_i}}{Ms^3 + Cs^2 + Ks + \frac{K}{T_i}} \right) = \frac{\Omega}{s} \left(1 - \frac{\frac{K}{T_i}}{\frac{K}{T_i}} \right) = 0$$

A.C.Ritchie

19 TRANSIENT RESPONSE – THIRD AND HIGHER ORDER SYSTEMS

• Generalised transfer function for the system:

$$G(s) = \frac{Q(s)}{P(s)}$$

$$\mathbf{G}(s) = \frac{Q(s)}{(s-p_1)(s-p_S)\dots(s-p_N)}$$

20 ROUTH-HURWITZ STABILITY CRITERIA

$$P(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_n = 0$$

Routh Hurwitz criteria for stability:

- i) Necessary: All coefficients $a_0, a_1, a_2, ..., a_n$ are non-zero and have the same sign.
- ii) Necessary and sufficient: if i) is satisfied, then the Hurwitz determinants $D_1, D_2, ..., D_n$ must be positive.

21 ROUTH-HURWITZ STABILITY CRITERIA (ROUTH ARRAY)

s ⁿ	a_0	a_2	a_4	a_6	•••
s^{n-1}	<i>a</i> ₁	<i>a</i> ₃	a_5	a_7	•••
s^{n-2}	b_1	b_2	b_3	•••	•••
s^{n-3}	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	•••	•••
•••	•••	•••	•••	•••	•••
<i>s</i> ⁰	•••	•••	•••	•••	•••

$$b_{1} = \frac{a_{1}a_{2} - a_{0}a_{3}}{a_{1}} \qquad b_{2} = \frac{a_{1}a_{4} - a_{0}a_{5}}{a_{1}} \qquad b_{3} = \frac{a_{1}a_{6} - a_{0}a_{7}}{a_{1}}$$
$$c_{1} = \frac{b_{1}a_{3} - a_{1}b_{2}}{b_{1}} \qquad c_{2} = \frac{b_{1}a_{5} - a_{1}b_{3}}{b_{1}}$$

$$G(s) = \frac{1}{s^3 + 5s^2 + 20s + 6}$$

Is the system stable?	Routh-Hurwitz Array			
	s ³			0
	s^2			0
	S	b_1	b_2	<i>b</i> ₃
	<i>s</i> ⁰	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃

$$G(s) = \frac{1}{s^3 + 5s^2 + 20s + 6}$$

Is the system stable?	Routh-Hurwitz Array				
	s ³	1	20	0	
	s^2	5	6	0	
	S	<i>b</i> ₁	<i>b</i> ₂	b_3	
		$=\frac{5\times20-1\times6}{1\times100}$	$=\frac{5\times0-1\times0}{1}$		
		5	5		
	<i>s</i> ⁰	<i>C</i> ₁	<i>C</i> ₂	<i>c</i> ₃	

$$G(s) = \frac{1}{s^3 + 5s^2 + 20s + 6}$$

Is the system stable?	Routh-Hurwitz Array				
	s ³	1	20	0	
	<i>s</i> ²	5	6	0	
	S	$\frac{94}{5} = 18.8$	0	0	
	<i>s</i> ⁰	$c_1 = \frac{18.8 \times 6 - 0}{18.8} = 6$	0	0	

$$G(s) = \frac{1}{s^3 + 5s^2 + 20s + 6}$$

Is the system stable?	Routh-Hurwitz Array				
	s ³	1	20	0	
	<i>s</i> ²	5	6	0	
	S	$\frac{94}{5} = 18.8$	0	0	
	<i>s</i> ⁰	$c_1 = \frac{18.8 \times 6 - 0}{18.8} = 6$	0	0	

The transfer function of a control system is as follows:

$$G(s) = \frac{1}{s^3 + 5s^2 + 20s + 6}$$

Is the system stable?	Routh-Hurwitz Array			
	s ³	1	20	0
	<i>s</i> ²	5	6	0
	S	18.8	0	0
	<i>s</i> ⁰	6	0	0

No change of sign in the first column: system is stable.

The transfer function of a control system is as follows:

$$G(s) = \frac{1}{s^3 + 5s^2 + 20s + 6}$$

Use the final value theorem to calculate the unit step response of the system.

$$X(s) = \frac{1}{s}G(s) = \frac{1}{s(s^3 + 5s^2 + 20s + 6)}$$

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s) = s\frac{1}{s}G(s) = \frac{1}{s^3 + 5s^2 + 20s + 6} = \frac{1}{6}$$

FINIS

Any questions?