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GENERAL INTRODUCTION – SESSION 2

• Non-linearity and the operating point

• 1st order systems

• Characterising the system response



NON-LINEARITY AND THE OPERATING POINT

• Remember that the control system is maintaining the

operating condition close to an optimum efficiency – only

small variations from this will occur in practice.

• Speed up, slow down, no reversal of direction.

• Non-linearities such as: backlash, coulomb friction,

clearance, and saturation should not come into play around

this point.

pressure drop

flow

operating
range

“nominal”
operating point



Brilliant idea no. 2

• Hydraulic Position
Control

– Also known as servo-
assistance

– Aeroplane flaps

– Car brakes

– Power steering (some
cars)

– Tractors and JCBs!
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Hydraulic Position Control System

• How it works

– Operator changes setting (xi)

– Piston is fulcrum – spool valve (y) translates

– Spool valve admits fluid into cylinder

MMME2046 Dynamics and Control



6

spool
valve

a

b

y

xo

xi

q

Case Study: Hydraulic Position Control System

XoXi +

_
1/Tsμ

We showed that the transfer function is:

with the block diagram

1st order system
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spool valve piston

Hydraulic Position Control System: Overall Transfer Function

From the block diagram

rearranging

K/As

spool valve and piston

ܺ଴ ݏ

ܺ௜ ݏ
=

ܾ
ܽ

1 +
ܣ ܽ+ ܾ

ܽܭ
ݏ
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Stability
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Introduction to Transient and Steady-State Responses

i) Is the System Stable?

ii) How Accurate is the System in Steady State?
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Oscillatory step response
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iii) How Quickly Does the System Reach a Steady State?

output

time

"good"

output

time

"too slow"

output

time

"too oscillatory"
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Practical Measures of Transient Response

a) Maximum Overshoot as a percentage of step size.

b) Number of Oscillations before system settles to within a fixed
percentage (5% say) of its steady state value.

c) Rise Time: The time taken for output to rise from 5% to 95% of step size.

d) Settling Time: The time taken for output to reach and remain within ±5%
of steady state value.

e) Steady State Error

5 %

output

time

a

d

c

b

100 %
95 %

105 %

e
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1ST ORDER SYSTEMS

• Characteristic transfer function:

•
஺

ெ ௌା஼

ఓ

ଵାௌ்

• Step response:

• ൌݕ ߤ ͳ െ ݁ି
೟
೅ൗ

• (stable system!)



EXAMPLE SHEET 3 QUESTION 2

Figure Q2 illustrates a simple system for controlling the level of liquid in a

tank with uniform cross-sectional area A.The error signal ߝ is derived by

comparing the actual height ℎ with the desired level ℎ௜, and is fed to a

controller which drives a variable speed pump such that the controlled

volumetric inflow rate ௜ݍ to the tank is given by:

ܳ௜ ݏ ൌ ஼ܩ ݏ ɂ ݏ

where ஼ܩ ݏ is the transfer function of the controller. In addition, there is an

uncontrolled disturbance inflow to the tank given by ܳ஽ ݏ .The tank outflow

passes through a restriction with linearised flow resistance ܴ.

For the case when the controller is a proportional controller with gain ܭ ,

such that ஼ܩ ݏ ൌ ܭ

a) Derive the overall transfer function relating ℎ to ℎ௜ and ܳ஽ and show

that the system is first order;

pump

Transducer

qi

R

hi
h

h

Restrictor

஼ܩ ݏ

qD

ε
+ -



STAGE 1

• Dynamics for the tank – we need an

expression for h:

• In the time domain:

• Volume of tank = Ah(t)

݀

ݐ݀
݄ܣ ݐ ൌ ௜൅ݍ ஽ݍ −

ℎ

ܴ

In the Laplace domain,

ܪܣݏ ݏ ൌ ܳ௜ ݏ ൅ ܳ஽ ݏ െ
ܪ ݏ

ܴ

pump

Transducer

qi

R

hi h

h

Restrictor

஼ܩ ݏ

qD

ε

+ -

Volume=Ah

௜൅ݍ ஽ݍ

ℎ

ܴ



STAGE 1

௜ ஽

௜ ஽

Transfer functions:

௜

஽

pump

Transducer

qi

R

hi h

h

Restrictor

஼ܩ ݏ

qD

ε

+ -

Volume=Ah

௜൅ݍ ஽ݍ

ℎ

ܴ



STAGE 2: MAKE THE BLOCK DIAGRAM

pump

Transducer

qi

R

hi
h

h

Restrictor

஼ܩ ݏ

qD

ε
+ -

஼ܩ ݏ
௜ܪ ݏ ܴ

ͳ ൅ ݏܴܣ

ܪ ݏ

ܳ஽ ݏ
+

−

+

+

Note:Transfer function derived previously
describes relationship between Q and H –
schematic shows that H is fed back to the
summing junction



STAGE 3: OVERALL TRANSFER FUNCTIONS

஼ܩ ݏ
௜ܪ ݏ ܴ

ͳ ൅ ݏܴܣ

ܪ ݏ

ܳ஽ ݏ
+

−

+

+
ܪ ݏ ൌ ௜ܪ ݏ െ ܪ ݏ

ீ಴ ௦ ோ

ଵା஺ோ௦
(1)

ܪ ݏ ൌ ܳ஽ ݏ െ ஼ܩ ݏ ܪ ݏ
ோ

ଵା஺ோ௦
(2)

Rearrange to give Transfer functions:

ܪ ݏ 1 +
஼ܩ ݏ ܴ

ͳ ൅ ݏܴܣ
=
௜ܪ ݏ ஼ܩ ݏ ܴ

ͳ ൅ ݏܴܣ

ܪ ݏ ͳ ൅ ൅ݏܴܣ ஼ܩ ݏ ܴ ൌ ௜ܪ ݏ ஼ܩ ݏ ܴ

ܪ ݏ

௜ܪ ݏ
=

஼ܩ ݏ ܴ

ͳ ൅ ൅ݏܴܣ ஼ܩ ݏ ܴ

From (1):



STAGE 3: OVERALL TRANSFER FUNCTIONS

஼ܩ ݏ
௜ܪ ݏ ܴ

ͳ ൅ ݏܴܣ

ܪ ݏ

ܳ஽ ݏ
+

−

+

+
ܪ ݏ ൌ ௜ܪ ݏ െ ܪ ݏ

ீ಴ ௦ ோ

ଵା஺ோ௦
(1)

ܪ ݏ ൌ ܳ஽ ݏ െ ஼ܩ ݏ ܪ ݏ
ோ

ଵା஺ோ௦
(2)

Rearrange to give Transfer functions:

ܪ ݏ 1 +
஼ܩ ݏ ܴ

ͳ ൅ ݏܴܣ
=
ܳ஽ ݏ ܴ

ͳ ൅ ݏܴܣ

ܪ ݏ ͳ ൅ ൅ݏܴܣ ஼ܩ ݏ ܴ ൌ ܳ஽ ݏ ܴ

ܪ ݏ

ܳ஽ ݏ
=

ܴ

ͳ ൅ ൅ݏܴܣ ஼ܩ ݏ ܴ

From (2):



STAGE 3: OVERALL TRANSFER FUNCTIONS

஼ܩ ݏ
௜ܪ ݏ ܴ

ͳ ൅ ݏܴܣ

ܪ ݏ

ܳ஽ ݏ
+

−

+

+
ܪ ݏ

ܳ஽ ݏ
=

ܴ

ͳ ൅ ൅ݏܴܣ ஼ܩ ݏ ܴ

For combined input and disturbance:ܩ஼ ݏ ൌ ܭ

ܪ ݏ

௜ܪ ݏ
=

஼ܩ ݏ ܴ

ͳ ൅ ൅ݏܴܣ ஼ܩ ݏ ܴ

ܪ ݏ ൌ
௜ܪܴܭ ݏ ൅ ܳ஽ ݏ ܴ

ͳ ൅ ൅ݏܴܣ ܴܭ

Have we shown that the system is first order?



EXAMPLE SHEET 3 QUESTION 2

Figure Q2 illustrates a simple system for controlling the level of liquid in a

tank with uniform cross-sectional area A.The error signal ߝ is derived by

comparing the actual height ℎ with the desired level ℎ௜, and is fed to a

controller which drives a variable speed pump such that the controlled

volumetric inflow rate ௜ݍ to the tank is given by:

ܳ௜ ݏ ൌ ஼ܩ ݏ ɂ ݏ

where ஼ܩ ݏ is the transfer function of the controller. In addition, there is an

uncontrolled disturbance inflow to the tank given by ܳ஽ ݏ .The tank outflow

passes through a restriction with linearised flow resistance ܴ.

For the case when the controller is a proportional controller with gain ܭ ,

such that ஼ܩ ݏ ൌ ܭ

b) If the tank area �ൌܣ �ʹ and the flow resistance ܴ ൌ ͳͲ in consistent

units, find the required value of the controller gain ܭ to give a system

time constant of 5 seconds.

pump

Transducer

qi

R
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h
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஼ܩ ݏ
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STAGE 3: OVERALL TRANSFER FUNCTIONS

஼ܩ ݏ
௜ܪ ݏ ܴ

ͳ ൅ ݏܴܣ

ܪ ݏ

ܳ஽ ݏ
+

−

+

+
ܣ ൌ ʹ ������ܴ ൌ ͳͲ

ܪ ݏ

௜ܪ ݏ
=

ͳͲܭ

ͳ ൅ ʹ Ͳݏ൅ ͳͲܭ

For time constant,T, we must rearrange to give the form:

ܪ ݏ ൌ
௜ܪܴܭ ݏ

ͳ ൅ ൅ݏܴܣ ܴܭ

ܪ ݏ

௜ܪ ݏ
=

ߤ

ͳ ൅ ݏܶ

ൌߤ���
ଵ଴௄

ଵ଴௄ାଵ
�����ܶ ൌ

ଶ଴

ଵାଵ଴௄

	���ܶ ൌ
ଶ଴

ଵାଵ଴௄
ൌ ͷݏǡܭ ൌ ͲǤ͵



EXAM 2019
QUESTION 4

• Compulsory part

• Written in a different style – it

was set by colleagues at the

Ningbo campus

• Mathematically similar …



PART 1



PART 1

• The question tells us that ௖ , so we can write the forward transfer

function as
௄

௦ାଵ

• Error, E(s) is given by: ௜
ହ

௦ାହ ௢

• Using the blocks in the upper part of the diagram,

• ௢
௄

௦ାଵ ௜
ହ

௦ାହ ௢
௄

௦ାଵ



PART 1

ܺ௢ ݏ ൌ ܧ ݏ
ܭ

൅ݏ ͳ
= ܺ௜ ݏ െ

5

൅ݏ ͷ
ܺ௢ ݏ

ܭ

൅ݏ ͳ

• Multiply left and right by s+1: ൅ݏ ͳ ܺ௢ ݏ ൌ ܧܭ ݏ ൌ ܭ ܺ௜ ݏ െ
ହ

௦ାହ
ܺ௢ ݏ

• Multiply both sides of the equation by s+5:

• ൅ݏ ͳ ൅ݏ ͷ ܺ௢ ݏ ൌ ܭ ൅ݏ ͷ ܺ௜ ݏ െ ͷܺܭ௢ ݏ

• Rearrange to put terms in ܺ௢ on the left and ܺ௜on the right:

൅ݏ ͳ ൅ݏ ͷ ܺ௢ ݏ ൅ ͷܺܭ௢ ݏ ൌ ܭ ൅ݏ ͷ ܺ௜ ݏ



PART 1

• The overall transfer function is therefore:



PART II

• Part ii): A unit step input is given by:
ଵ

௦
and using the transfer function from (i) the output is:

ܺ௢ ݏ ൌ ܺ௜ ݏ ܩ ݏ ൌ
ܭ ൅ݏ ͷ

ݏ ଶݏ ൅ ͸ݏ൅ ͷ൅ ͷܭ

• Using the final value theorem (remember to multiply by s!):

lim
௧՜ ஶ

௢ݔ ݐ ൌ ���
௦՜ ଴

ݏܺ ௢ ݏ ൌ
ܭݏ ൅ݏ ͷ

ݏ ଶݏ ൅ ͸ݏ൅ ͷ൅ ͷܭ

• In the limit, s tends to zero so this becomes:

lim
௧՜ ஶ

௢ݔ ݐ ൌ ���
௦՜ ଴

ݏܺ ௢ ݏ ൌ
ܭݏ ൅ݏ ͷ

ݏ ଶ൅ݏ ͸ݏ൅ ͷ൅ ͷܭ
=

ͷܭ

ͷ൅ ͷܭ
=

ܭ

ͳ ൅ ܭ



PART III

There are two ways to do this:

• The first is by following this reasoning: If the steady state error is within ten percent, then 0.9 ≤

lim
௧՜ ஶ

௢ݔ ݐ ൑ ͳǤͳ . So using the result from part (ii):

0.9 ≤
ܭ

ͳ ൅ ܭ
≤ 1.1

• This holds true for K>9 and K<-11. We would normally only consider positive values for K so K>9 is

an acceptable answer.



PART III

• The second method is more formal: Begin by defining the error as a function of s:

ܧ ݏ ൌ ܺ௢ ݏ െ ܺ௜ ݏ ൌ
ܭ ൅ݏ ͷ

ݏ ଶݏ ൅ ͸ݏ൅ ͷ൅ ͷܭ
−

1

ݏ

ܧ ݏ ൌ
ܭ ൅ݏ ͷ െ ଶ൅ݏ ͸ݏ൅ ͷ൅ ͷܭ

ݏ ଶݏ ൅ ͸ݏ൅ ͷ൅ ͷܭ

lim
௧՜ ஶ

݁ ݐ ൌ ���
௦՜ ଴

ܧݏ ݏ ൌ
െݏ ଶݏ + ͸െ ܭ ൅ݏ ͷ

ݏ ଶݏ ൅ ͸ݏ൅ ͷ൅ ͷܭ
=

5

ͷ ൅ ͷܭ
=

1

ͳ ൅ ܭ

• The error at steady state must be less than 10%, giving K>9



PART IV

• My first tip is not to get involved in the numerator of the transfer function. All the information you

need is in the denominator – as a reminder, here are the relevant transforms from the table.



PART IV

• The denominator (remember its other name, the characteristic equation) of a closed loop second order

transfer function has the form:

ଶݏ ൅ ʹ ߞ߱ ௡ݏ൅ ߱௡
ଶ

• Where ߱௡ is the natural frequency and ߞ is the damping ratio.

• From the answer to part (i):

ଶ൅ݏ ʹ ߞ߱ ௡ݏ൅ ߱௡
ଶ ൌ ଶݏ ൅ ͸ݏ൅ ͷ൅ ͷܭ



PART IV

ଶ൅ݏ ʹ ߞ߱ ௡ݏ൅ ߱௡
ଶ ൌ ଶݏ ൅ ͸ݏ൅ ͷ൅ ͷܭ

• So the unit (s0) terms give the natural frequency: ߱௡
ଶ ൌ ͷ൅ ͷܭ

• Terms in s give the damping ratio: ʹ ߞ߱ ௡ = 6

• ൌߞ
ଷ

ఠ೙
=

ଷ

ହାହ௄
= 0.5 (from the question).

ଷ

ହାହ௄
= 0.5 and ͷ൅ ͷܭ ൌ ͸.

• It follows that ͷ ൅ ͷܭ ൌ ͵ ͸and K=6.2



PART IV

• K=6.2. To find ߱௡:

• Either:

• ߱௡
ଶ ൌ ͷ൅ ͷܭ ൌ ͷ൅ ͵ ͳ ൌ ͵ ͸and ߱௡ = 6

• Or ʹ ߞ߱ ௡ = 6, ൌߞ ͲǤͷ�so ߱௡ = 6.



THE END?

Any questions?


