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GENERAL INTRODUCTION — SEMINAR 4

Response of |t order system to ramp input; velocity lag

Response of |5t order system to sine input: phase lag

Response of 2" order system to step and ramp inputs

Introduction to the concept of root locus

Example sheet 4 questions | and 2




Hydraulic Position Control System under Standard Inputs

i) Ramp Input
t<o  x(t) =0
t=0 xi(t) = Vit
From the table of L.T. V;
Xi(s) = S—L
The output in s-domain X, (s) = s
0 s2(1+Ts)
In the time domain x,(t) = uVit —uViT (1—e /1

A xo

v
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Hydraulic Position Control System under Standard Inputs

i) ramp Input

t>0 x(t) =Vt

%4
From the table of LT. X(s) = 2 (14)
The output in s-domain X, (s) = ad (15)
° s?2(1+Ts)
t
In the time domain Xo(t) = uVt — uvT (1 - e_f) (16)

Xo

T

uVt

t
uvt — uvrT (1 — e_T)
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Hydraulic Position Control System under Standard Inputs

1ii) Oscillatory
Input R | t<0 x;(t) =0
‘ \ \ t>0 x;(t) = Asin(wt)
From the table of L.T. X (s) = AV (5)
P (52 4+ w?)
. . Aw?
The output in s-domain _ a (6)
P Xo(8) = o+ T9)
_ pAw? 1-Ts T? _ pAw? 1 _Ts T?
Xout(s) = 1+ w2T? ((52+a)2) (1+TS)) 1+ w?2T?2 ((52+a)2) (s24+w?) t (1+Ts))

Steady state: w
gain and phase
angle (1st order lag) = | | |

Ml




Hydraulic Position Control System under Standard Inputs

1ii) Oscillatory
Input R | t<0 x;(t) =0
‘ \ \ t>0 x;(t) = Asin(wt)
From the table of L.T. X (s) = AV (5)
P (52 4+ w?)
. . Aw?
The output in s-domain _ a (6)
P Xo(8) = o+ T9)
_ pAw? 1-Ts T? _ pAw? 1 _Ts T?
Xout(s) = 1+ w2T? ((52+a)2) (1+TS)) 1+ w?2T?2 ((52+a)2) (s24+w?) t (1+Ts))

Steady state: w
gain and phase
angle (1st order lag) = | | |
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Recap: The Final Value Theorem

The final value theorem:
Xss = lim x,(t) = lim sX,(s) (9)
t—oo s—0
Gives the steady-state response of a system.

Some provisos:
Steady state implies that we have a finite end value:

Chart Title .

. Which of these can we use
14 the finite value theorem on?
12 a(t)?

1

?

s b(t):
0.6 c(t)?
0.4 d(t)?
0.2

0
02 0 0.5 1 15 2 25 3 35

—0—3a(t) —e—Db(t) c(t) —e—d(t)
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Example: Electro-Mechanical Position Control System

viscous lead
damping sScrew
DC servo-

motor
Servo-

amp
X (output)

position
transducer

Vi
input
voltage
It will be shown that the transfer functions may be written as
X(s) Wy,
Xi(s)  s242yw,s + w?
l Vn " 2"d order system

X(s) -1
Fr(s)  M(s2? + 2ywy,s + w2)

https://www.youtube.com/watch?v=Sn8DgDGwazs
MMME 2046 Dynamics and Control




E.-M. Position Control System: Equations for the Model

i) Position Transducer output V. = K,x K, is constant

error voltage V=V,-V,.=V,—Kx

i) Servo-Amplifier develops current (K; is another constant)
ir =KV, = K (Vi — Kyx)

iif) DC Servo-Motor develops torque (K, is motor constant)
lm — Kzlf - KZKI(VL - K4X)

iv) At Lead Screw the torque is converted into a force on the load mass
fm = Ksl,, = KKK (V; — Ky x) K5 = 2m/(pitch of leadscrew)
Laplace domain E,(s) = K;K, K3 (V;(s) — K, X(s)) (1)
v) For the Load Mass assuming viscous damping
Mx+Cx=f,—fr
En(s) — Fr(s) (2)

Laplace domain  X(s) = Ms? F Cs

MMME 2046 Dynamics and Control
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E.-M. Position Control System: Block Diagrams
Using Egs. (1) and (2)
Voltage error, V-V, E, Fr Fo-Fr

1 X

(corresponds to position)
i o+ l + %— 1 X
K K K.
1772773 Ms? + Cs >

K,

Focusing on actual position error
Positi  X-X -
ositon error, i V V FR

Vi 11(&1( /KKK—té:» 1
—> /4‘?’ 4 P B33 VsZ 1 Cs

with K= K,K,K;K,

X(s) = (IXi(s) — X(s)IK — Fr(s))

Ms? 4+ Cs

MMME 2046 Dynamics and Control



E-.M. Position Control System: Overall Transfer Function

Rearranging [Ms? + Cs + K]1X(s) = KX;(s) — Fr(s) (3)
Preferred form
[s2 + 2yw,s + w2 ]X(s) = w2X(s) — FE;\EIS)
with ¢ 2yw, and i = s
M M
X(s) = wiX;(s) Fr(s)

S2 + 2yw,s + w2 M(s% + 2yw,s + w?2)
Transfer function

X(s) Wi
Xi(s)  s2+2yw,s + w? (4)
X wg X

> = >

S2 + 2yw,s + w?

MMME 2046 Dynamics and Control
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E.-M. Position Control System under Standard Inputs

1) step Input
7 t<0 Vi(t) =0
‘ t=0 Vi(®) =V,
V. X
From the table of L.T. X. - -1 5
i(s) K,s s (5)
The output in s-domain
w2 X; w2 X
XO (S) — n<*1 n“*1 (6)

S(sZ+ 2ywns + w2)  S(s — p1)(s — p2)

with the roots of the characteristic equation

s+ 2ywps + w2 =0

P1=—Ywn+wyVy? -1 P2 = —Ywp —wpy/y2—1

MMME 2046 Dynamics and Control
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E.-M. Position Control System under Step Input

Assuming a unit step input and using partial fractions

B A A,
X,(s) =—
0(s) s s—p s—p

where (for y # 1)

With the inverse Laplace transform, in the time domain

X,(t) = B + A eP1t + A,eP2t

This solution, valid for y # 1, gives rise to two distinct
types of transient response.

MMME 2046 Dynamics and Control
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E.-M. Position Control System under Step Input

Dy>1 p, and p, are real and unequal. For this situation the
response is overdamped (non-oscillatory).

nyy<1 p, and p, are complex conjugate (as A; and A, )
P1 = —Ywy +iwyy1 —y?
— Y Wq _io‘)n\/1 _yz

—)/(,()nt

x,(t) = X; |11 — jl_sm(a)nt\/ 1—y?+ (,b)]

P2

T
Maximum overshoot at t =
Wy 1-— )/2
Cym
with magnitude Xmax = Xi (1 + eVi-v?

MMME 2046 Dynamics and Control
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Simulink Model: y>1
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Simulink Model: y>1

2

S+3s+1

_I_>D

e
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o0
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Simulink Model: y=1

What is the transfer function in this case?

File Tools View Simulation Help

- BOP® | =-QA-E-FH-

Ready
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E.-M. Position Control System under Step Input

i y=1 p, and p, are real and equal (= - w,) and the response is

Is said to be critically damped.
%o (t) = Xi[1 — (1 + wyt)e™“nf]

The transient responses under a step input for all
three cases can be summarised

x, (1)

MMME 2046 Dynamics and Control
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E.-M. Position Control System under Standard Inputs

i) ramp Input
Ot t<o0 Vl(t) =0
t>0 Vi(t) = 0t
Q
From the table of L.T. Vi(s) = 2
V:(s) Q Q
and from the b.d. (s) = —L = =2 8
Xi() = == o = 5 (8)
The output in s-domain X, (s) = il (9)
P o - 52(s2 4+ 2yw,s + w?)
In the time domain
2
x,(t) = Q, (t — w_)/ + A eP1t + Azepzt) (10)
n

MMME 2046 Dynamics and Control
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E.-M. Position Control System: S.-S. Error under Ramp Input

From the block diagram, for F; = 0 (no disturbance)

Ms? + Cs

E(S) = Xi(8) = Xo(8) = 317 pes

. 11
KXI(S) (11)

For a ramp input X(s) from Eq. (8)

E(s) = Ms? +Cs Q, _ Ms+C Q, (12)
Ms? +Cs+ K s? Ms?+Cs+K s
Using the final value theorem the steady-state error
- %Qx = i—:Qx (13)

MMME 2046 Dynamics and Control

22



0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.5

e(t) for y<1

MMME 2046 Dynamics and Control

3.5

4.5

23



Hydraulic Position Control System: Transient Response

pX;

A

transient

\ A

characteristic equation
Set denominator =0

1
P = —_ =
(s) S-I—T 0

with one real root S = —

The roots of the C.E. in the s-plane govern stability and
transient behaviour

s-plane

Re

 J

MMME 2046 Dynamics and Control
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E.-M. Position Control System: Transient Response

The roots of the C.E. in the s-plane govern stability and
transient behaviour

P1 =~ YWy + wpyVy? —1 P2 = =YWy —wpyy? — 1

Im s-plane
increasing y follows the
direction of the arrows. p,(y =0)
Re
pi(y >1)
pi=p, (fory =1) p.(y =0)

The roots trace out loci in the s-plane.

MMME 2046 Dynamics and Control 25



Visualisation of root locus
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Example sheet 4 question 1

1. Figure 1 shows a mass-damper-spring system with an applied force p(t).

a. Derive the transfer function G(s) that relates the applied force p(t) to the velocity
of the mass, v(t). Let the Laplace Transform of p(t) and v(t) to be P(s) and V(s),
respectively.

b. Determine the steady state velocity response of the mass when a step input force is
applied to the system. The magnitude of the step input is a.

c. Determine the steady state velocity response of the mass when a ramp input force
p(t)=gt, is applied to the system.

1 p(t)
m ‘
X

ANONNNNNNNNNN

Figure 1.

A.C. Ritchie MMME 2046 Dynamics and Control
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A.C. Ritchie

Example sheet 4 question 1

a) Derive the transfer function G(s) that relates the applied force p(t) to the velocity
of the mass, v(t). Let the Laplace Transform of p(t) and v(t) to be P(s) and V(s),
respectively.

Thefirst step here is to determine the equation of motion in the time domain: if the velocity of the massis x
then the force due to the damper is —cx (note that it will always oppose the motion). Force due to the spring
Is —kx, so the net force acting on the mass will be:
Net force = p(t) — cx — kx
Thereforeif the acceleration of the massis i :
mx = p(t) —cx — kx
Rearranging gives the familiar form:
p(t) = mi + cx + kx
And Laplace transforms give us.
P(s) = (ms? + cs + k)X(s)

MMME 2046 Dynamics and Control 28



A.C. Ritchie

Example sheet 4 question 1

a) Derive the transfer function G(s) that relates the applied force p(t) to the velocity
of the mass, v(t). Let the Laplace Transform of p(t) and v(t) to be P(s) and V(s),
respectively.

L aplace transforms give us:

P(s) = (ms? + cs + k)X(s)

Thisisfine—but the question asks for atransfer function in terms of the velocity, v. | find it easiest to work

in terms of x to here, and then to substitute as follows:

If v = x, then for asystem that isinitially at rest (number 1 in the table of Laplace transforms):

V(s) =sX(s)

So substituting ¥ /s for X (s):

(ms? + cs + k)V(s)

S

P(s) = (ms? +cs+ k)X(s) =
Rearranging gives the transfer function:

G(s) =

Vis) _ S
P(s) ms24+cs+k

MMME 2046 Dynamics and Control 29



Example sheet 4 question 1

b. Determine the steady state velocity response of the mass when a step input force is
applied to the system. The magnitude of the step input is a.

l p(t) G(S) _ V(S) _ S
P(s) ms?+4+cs+k
a
m T P(S) - g
as a
X V — —
(s) s(ms?2+cs+k) ms?+cs+k
See worked example solutions for how to do this in the time
k — ¢ domain ... it’s rather complicated.
Final value theorem:
as
D\SUNNNNNNNNN lim v(t) = lim sV (s) = ——5————

A.C. Ritchie MMME 2046 Dynamics and Control



Example sheet 4 question 1

l p(t) (c) Determine the steady state velocity response of the mass
when a ramp input force p(t) = at, is applied to system.
From the table of Laplace transforms (no. 6, multiply by o):

e P(s) = —

52
SO
k ¢ V(s) =G(s)P =
-1- (s) ()P(s) s?(ms? +cs+k)
o
ANA NN NN N RN V) = Smst s 110
o Using the final value theorem:

To!o tip: be.comfortable ’ . ) <o ) o o
using the final value fim (o) = 1{13 sV(s) = s(ms2+cs+k) msi+cs+k k
theorem. It saves time 7
and gets the same
marks!

MMME 2046 Dynamics and Control
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Example sheet 4 question 2

2. For the system described in Q1, a control system is designed to regulate the velocity of
the mass, using a proportional controller, Kc(s)=K, with a reference velocity yR(t). The

block diagram representation of the control system is shown in Figure 2. There are two

different forces applied to the mass: the disturbance force, fd(t), and the control force,

fe(t).

a. Determine the transfer function from the reference velocity VR(s) to the velocity of
the mass V(s). Draw the corresponding block diagram.

b. Determine the transfer function from the disturbance force Fd(s) to the velocity of
the mass V(s). Draw the corresponding block diagram.

c. What is the effect of the proportional control gain to the system damping?

Fd (3)
VR(S) 7~ , KC(S) + + G(s) V£s)
+\r— F(s) PO I
Figure 2.

A.C. Ritchie MMME 2046 Dynamics and Control



A.C. Ritchie

Example sheet 4 question 2

Fd(s)
)~ K|+ . [ Vis)
alicen
Vis) _ S

(a) Gls) = P(s) ms?2+4+cs+k
V(s) = (Vr(s) = V(s))K.(s)G(s)
V(s)(1+ K:(s)G(s)) = Vr(s)K:(s)G(s)

V) K()G() SK,(5)
Ve(s) 14+ K.(5)G(s) ms2+cs+k+sK.(s)
V()  K()G(s) SK,(5)

Ve(s) 14 K.(s)G(s) T ms? + (c+K.(s))s+k

MMME 2046 Dynamics and Control
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A.C. Ritchie

Example sheet 4 question 2

Fd(s)
)~ K|+ . [ Vis)
ST
S

(b) G(s) :m52+cs+k
V(s) = (Fy(s) — K.(s)V(s))G(s)

V(S)(1+ Ke()G(5)) = Fa(s)G(s)
V(s) B G(s) S

Fi(s) 14 K.(s)G(s) T msZtcestk+ sK.(s)
V(s) B S

Fi(s) ms2 + (c+K.(s))s+k

MMME 2046 Dynamics and Control
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Example sheet 4 question 2

Fd(s)

GNP R R AN I . [ Vis)

>
a=Catln

What is the effect of the proportional gain K. on the
(c) system damping?

S

ms? +cs+k
Characteristic equation:

ms? + (c + K.(s))s + k = m(s? + 2ywps + w2) = 0
Natural frequency:

2y, = (c + KC(S))

m
A.C. Ritchie MMME 2046 Dynamics and Control
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Example sheet 4 question 2

Fd(s)

[xo [+ [6® Vis)

e >
PR

(c) L

VR(S)

2y, = (c + KC(S))

B (c + K:?s))
~ 2vkm

And therefore increasing the proportional gain K.(s) will
have the effect of making the system more stable.

A.C. Ritchie MMME 2046 Dynamics and Control
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The End ...
Next week in Dynamics and
Control

LECTURE 5 — PID CONTROLLERS, STABILITY IN HIGHER ORDER SYSTEMS



