

MMME2046 Dynamics and Control: Lecture 2

Machine Dynamics: Planar Kinematics of Rigid Bodies

Mikhail Matveev <u>Mikhail.Matveev@Nottingham.ac.uk</u> 7 Adversed Marsufacturing Duilding, Jubiles Corre

C27, Advanced Manufacturing Building, Jubilee Campus

Handouts Chapter II.1-II.4

Lecture objectives

- Classify various types of rigid body motion
- Perform velocity and acceleration analysis on simple mechanisms

Rigid Body definition

- System of particles
- Distances between particles • remain unchanged
- Deformations are neglected

Particle – Rigid body – System of rigid bodies

The University of Nottina

UNITED KINGDOM · CHINA · MALAYSIA

ham

• Line segments maintain orientation

 $t = t_3$

• Points move on "parallel" trajectories

At any instant of time:

$$\underline{v}_{A} = \underline{v}_{B} = \underline{v}_{C} = \dots$$

$$\underline{a}_{A} = \underline{a}_{B} = \underline{a}_{C} = \dots$$

Rigid Body motion: Pure translation

 $t = t_1$

Rigid Body motion: Rotation about fixed axis

Kinematics of rigid body governed by: $\theta(t)$ angle of rotation $\dot{\theta}(t) = \omega(t)$ angular velocity $\ddot{\theta}(t) = \alpha(t)$ angular acceleration

Each point performs circular motion. E.g. for point C:

 $v_c = \omega d$ velocity magnitude $a_C^n = \omega^2 d$ acceleration components $a_C^t = \alpha d$ d

Relative motion

 $\underline{r}_{\mathsf{B}} = \underline{r}_{\mathsf{A}} + \underline{r}_{\mathsf{B}\mathsf{A}}$

Fundamental equations for rigid bodies!

$$\underline{v}_{\mathsf{B}} = \underline{v}_{\mathsf{A}} + \underline{v}_{\mathsf{B}\mathsf{A}}$$
$$\underline{a}_{\mathsf{B}} = \underline{a}_{\mathsf{A}} + \underline{a}_{\mathsf{B}\mathsf{A}}$$

Note: changing order in "BA" completely changes the physical meaning!

Note: \underline{r}_{BA} is read: 'Position of B as seen by A' (A is the reference point)

A

 \underline{V}_{BA}

Known: $\underline{V}_{B} = \underline{V}_{A} + \underline{V}_{BA}$ (1)

Relative motion at B is <u>circular</u> around A:

- 1) magnitude: $v_{BA} = \omega AB$
- 2) direction: perpendicular to AB
- 3) sense: governed by the angular velocity

The University of

UNITED KINGDOM · CHINA · MALAYSIA

Acceleration relations in planar motion

Given: acceleration at A, angular velocity & angular acceleration

Known:
$$\underline{a}_{B} = \underline{a}_{A} + \underline{a}_{BA} = \underline{a}_{A} + \underline{a}_{BA}^{n} + \underline{a}_{BA}^{n} + \underline{a}_{BA}^{t}$$
 (2)

Relative motion at B is circular around A:

 a_{Δ}

B

<u>a</u>BA

- 1) magnitudes: $a_{BA}^n = \omega^2 AB$ $a_{BA}^t = \alpha AB$
- 2) directions & senses:

 a_{BA}

- Normal component always has direction towards the reference point.
- Tangential component is perpendicular to AB with direction defined by α .

The Universitu of

Example II.1: Slider mechanism

Figure shows part of a slider mechanism at a particular instant in time. Collar A moves along a fixed horizontal track with **velocity** *v* and acceleration *a*. Link AB has length 100 mm and **rotates with angular velocity** *w* and angular acceleration α . At the instant shown, link AB is at an angle of 30° to the track, *v*=1 m/s, a=20 m/s², *w*=20 rad/s and α =100 rad/s².

Determine the velocity and acceleration of point B at the instant shown.

The University of Nottingham Example II.1: Slider mechanism UNITED KINGDOM · CHINA · MALAYSIA Velocity Analysis <u>V</u>BA Velocity of B is calculated using 60 (1) $\underline{\mathbf{v}}_B = \underline{\mathbf{v}}_A + \underline{\mathbf{v}}_{BA}$ B AB = 0.1 mω 30° $v_{A} = 1 \text{ m/s}$ $\omega = 20 \text{ rad/s}$

 $v_{BA} = \omega AB = 20 \times 0.1 = 2 \text{ m/s}$

Calculate velocity B by resolving equation (1) in horizontal and vertical directions:

$$v^+$$
: $v_{Bx} = v_A - v_{BA} cos 60^\circ = 1 - 2 cos 60^\circ = 0$

↑⁺:
$$v_{By} = 0 + v_{BA} sin 60^\circ = 2 sin 60^\circ = 1.732 \text{ m/s}$$

At the instant shown, the velocity of B is vertically upwards.

MMME2046 Dynamics: Lecture 2

<u>V</u>_A

Example II.1: Slider mechanism

Acceleration of B is calculated using

 $\underline{\mathbf{a}}_{\mathrm{B}} = \underline{\mathbf{a}}_{\mathrm{A}} + \underline{\mathbf{a}}_{\mathrm{BA}}^{\mathrm{n}} + \underline{\mathbf{a}}_{\mathrm{BA}}^{\mathrm{t}}$ (2)

AB = 0.1 m $\omega = 20 \text{ rad/s}$

 $a_{\rm A} = 20 \text{ m/s}^2$ $\alpha = 100 \text{ rad/s}^2$

$$a_{BA}^{n} = \omega^{2}AB = 20^{2} \times 0.1 = 40 \text{ m/s}^{2}$$

 $a_{BA}^{t} = \alpha AB = 100 \times 0.1 = 10 \text{ m/s}^{2}$

Calculate acceleration of B by resolving equation (2) in horizontal and vertical directions:

→⁺
$$\Sigma X$$
: $a_{Bx} = a_A - a_{BA}^n \cos 30^\circ - a_{BA}^t \cos 60^\circ$
= 20 - 40 cos 30° - 10 cos 60° = -19.64 m/s²

 \uparrow^+ ΣY: $a_{By} = 0 - a_{BA}^n \sin 30^o + a_{BA}^t \sin 60^o = -11.34 \text{ m/s}^2$

The University of Nottinaham

UNITED KINGDOM · CHINA · MALAYSIA

Example II.2: Rigid link

The ends A and B of a rigid link (AB=0.5 m) move along fixed horizontal and vertical guides. In the position shown, A is moving towards O with a constant velocity of 5 m/s. Calculate the velocity and acceleration of B and the angular velocity and angular acceleration of AB.

Example II.2: Rigid link

Velocity Analysis

Velocity of B is calculated using $\underline{\mathbf{v}}_B = \underline{\mathbf{v}}_A + \underline{\mathbf{v}}_{BA}$ (1*)

 $v_{BA} = \omega AB$

$$\Rightarrow^+: \quad 0 = -\mathbf{v}_A + \mathbf{v}_{BA} \cos 60^\circ = -\mathbf{v}_A + \omega AB \cos 60^\circ$$

$$\omega = \frac{\mathbf{v}_A}{ABcos60^\circ} = \frac{5}{0.5 \times 0.5} = 20 \text{ rad/s}$$

↑+: $v_B = 0 + v_{BA} sin60^\circ = 20 \times 0.5 sin60^\circ = 8.66 \text{ m/s}$

Example II.2: Rigid link

Acceleration Analysis

Acceleration of B is calculated using

 $\underline{\mathbf{a}}_{B} = \underline{\mathbf{a}}_{A} + \underline{\mathbf{a}}_{BA}^{n} + \underline{\mathbf{a}}_{BA}^{t}$ $a_{BA}^{n} = \omega^{2}AB = 200 \text{ m/s}^{2}$ $a_{BA}^{t} = \alpha \text{ AB}$

$$\rightarrow^+: \quad 0 = 0 + a_{BA}^n \cos 30^\circ + \alpha AB \cos 60^\circ$$

$$\alpha = -\frac{a_{BA}^n \cos 30^\circ}{AB\cos 60^\circ} = -692.8 \text{ rad/s}^2$$

↑+: $a_B = 0 - a_{BA}^n sin 30^\circ + αABsin 60^\circ = -400 \text{ m/s}^2$

Lecture objectives

• Classify various types of rigid body motion

Perform velocity and acceleration analysis on simple mechanisms

Next lecture

 Perform velocity and acceleration analysis on more complex linkage mechanisms

 Instantaneous centre of rotation and use of it for velocity analysis