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APPROXIMATE METHODS 

Often the lowest natural frequency is the most important 
 
 If the 1st critical speed of a shaft is above its operating speed 

range, whirl is avoided 

 The 1st mode normally gives the largest displacement for a given 
excitation  

A. Rayleigh’s Method 

 A & B are used to estimate the lowest natural 

frequency of structures 

B. Creating single-degree-of-freedom dynamic 
models of more complex systems 
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A.  RAYLEIGH’S METHOD 

For an undamped system in free vibration, energy is conserved, so that 
 

 Max. Kinetic Energy = Max. Strain Energy 

 These can be found if we know the deflected shape (i.e., the 
mode shape) of the system 

 Normally, we do NOT know the exact mode shape, so we need to 
make an estimate 

 Accuracy depends on making a good guess 
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Example 1  Two-degree-of-freedom System 

The instantaneous kinetic energy of mass 1 is  

2

112
1 xm 

m 2 

m 1 

k 2 

k 1 

x 2 

x 1 

  tXtx ωsin11      tXtx ωcosω 11 

That is, the maximum velocity is  

If then 

 1ωX

Therefore, the maximum kinetic energy of mass 1 is  

  2

1

2

12
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112
1

max ωω XmXmT 

For both masses 

 2
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2
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max ω XmXmT 
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The instantaneous strain energy of a spring is  

 2

2
1 lengthofChangeStiffness 

m 2 

m 1 

k 2 

k 1 

x 2 

x 1 

For the top spring, this is  
2

112
1 xkU 

  tXtx ωsin11 If then 
2

112
1

max XkU 

For the bottom spring 

 2

2122
1

max XXkU 

For both springs 

 2

2122
12

112
1

max XXkXkU 
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 
2

22

2

11

2

212

2

112ω
XmXm

XXkXk




Equating                  , we get 

For m1 = m2 = 2 kg and k1 = k2 = 200N/m, 

m 2 

m 1 

k 2 

k 1 

X 2 

X 1 

We need an educated guess based on experience  

If we can estimate the mode shape, we will have values of X1 and X2 

that can be substituted into the equation  

we know that the two masses vibrate in phase and  

12 XX 

X1 = 1 and X2 = 2 Let’s guess that  

This gives a value for wn of 1.007 Hz  

This is an error of 2.3%  (exact value is 0.984 Hz)  

maxmax UT 
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A good estimate for the mode shape is the 
static deflection shape due to gravity  

X 2 

X 1 

Here, the bottom spring supports 2 kg, but the top 
spring carries the weight of both masses (4 kg) 
 
Therefore the extension of the top spring will be 
twice the extension of the bottom spring 

To find X1 and X2 set a nominal displacement of 1. 
X1= 2* Nominal Displacement 
X2 = X1 + Nominal Displacement 

Hence,  X1 = 2 and X2 = 3 

This gives  wn = 0.987 Hz, an error of 0.4%  

Try using the exact mode shape  

X1 = 0.618 and X2 = 1.000 

You should get the exact answer  

2 kg 

2 kg 

200 N/m 

200 N/m 

Exercise 
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In general,  
ExactRayleigh ωω 

 Try several possible mode shapes 

 Lowest frequency will be most accurate  

 
2

22

2

11

2

212

2

112ω
XmXm

XXkXk






For this two-degree-of-freedom system, the lowest 
natural frequency is predicted by the expression  

m2

m1

k 2

k 1

X2

X1

m2

m1

k 2

k 1

X2

X1

This applies only to this specific system.  Other 
systems will have different expressions.  

These can be worked out in the same way  
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Rayleigh’s method for shafts and beams  

The expressions for the maximum kinetic and strain energies are  

   xxYAT

L

dρω
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







 

 xY where          is the mode shape function, which defines the amplitude 
of vibration of the shaft/beam along its length  

We need to guess          in order to evaluate the integrals   xY 

These expressions are 
on the Formula Sheet 
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Example 1: Uniform Cantilever Beam  

The exact answer is  
A

IE

L
n

ρ

52.3
ω

2


The main criterion for choosing the mode shape is that it should 
satisfy the displacement and slope conditions at the ends  

Here 0
d

d


x

Y
Y at   x = 0  
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Choice #1    2xCxY 

This satisfies the displacement and 
slope conditions at the clamped 
end and gives a shape that is 
similar to the actual mode shape  

Maximum Kinetic Energy  

  xxCAT

L

dρω
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Exact mode shape

Quadratic

   xxYAT

L

dρω
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2
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max

0


Hence  
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
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
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
 

Maximum Strain Energy  

  xCIE

L

d2
2

2
1

0


LCIE 22

Equating gives  

Prediction is  Error is 27%  

4
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ρ
20ω
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

A
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n

ρ
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ω

2


  2xCxY where  
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Choice #2  Static deflection due to self-weight  

Prediction is  

Error < 1%  

A
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L
n

ρ
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

Leads to  
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2234
64 xLxLxCxY

Integrating Macaulay’s Method  xM
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Choice #3   A trigonometric function  

2L 3L 4L 
0 

L 

 xY 

x 

Trigonometric functions are often good approximations to the 
deflected shapes of beams and can be found by inspection for 
particular cases 

For a cantilever, part 
of a cosine wave has 
the right characteristics 

  









L

x
xY

4
π2cos1


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






L

x

2

π
cos1

Using this, the prediction is  4% high  
A
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L
n

ρ

66.3
ω

2

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The better the mode shape estimate, the more accurate the prediction  

Static deflection shape is best 
 Very close to exact mode shape 

Quadratic function is poor 
 Over-estimates strain energy 
 Under-estimates kinetic energy 

Trig function is a good compromise 
 Can be found for different beams by inspection  
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Example 2:  Beams/shafts with added masses  

mr 

xr 

Added masses don’t change the strain energy, but they do add 
extra kinetic energy  

rxx  






 rx Y  ωFor mass at  max. velocity is 

Contribution of mass #r  to the KE is    rm   rx Y  















2

2
2

1
ω

These contributions are added to the kinetic energy of the shaft itself  

 rxY
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KE of beam KE of added masses 

   xxYAT

L

dρω
22

2
1

max

0
   22

2
1 ω rr xYm

r


Total KE is therefore  

SUMMARY 

Taking Dunkerley & Rayleigh together, we can obtain a band 
containing the exact frequency  

RayleighExact ωω 
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Equations of Motion vs Energy Methods  

k 

m 

x The equation of motion is 

0 xkxm  (1) 

With no damping, energy is conserved so that 
at any instant, the sum of the kinetic and 
strain energies is constant  

constant2

2
12

2
1  xkxm 

Differentiation gives the rate of change of energy 

0
d

d

d

d


t

x
xk

t

x
xm




Cancelling the velocity gives Equation (1) 
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The equation of motion reflects the rates of change of the kinetic 
and strain energies of the system  

Lagrange’s Equations are based on this and provide a method of 
deriving the equations of motion of a system (including damping) 
from energy expressions  

Also linked to energy considerations is the concept of Dynamically 
Equivalent Systems 

If the total strain and kinetic energies of two different dynamic 
systems are identical, an exact analogue relationship will exist 
between the two systems 
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Dynamically Equivalent Systems 

I2 k 

I1 

q1 

q2 m 2 

m 1 

k 

x 2 

x 1 
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B.  Single-degree-of-freedom Dynamic Models of Complex Systems 

If only one mode of vibration is of interest, the concept of 
Dynamically Equivalent Systems provides a method for producing 
an approximate single-degree-of-freedom model to describe that 
mode of vibration 

We will consider only undamped systems 

The approximate model consists of a simple mass-spring system, in 
which the displacement of the mass represents the 
displacement of some chosen point on the real structure  

The mass and spring stiffness of the approximate model are chosen 
so that the maximum strain and kinetic energies of the real and 
model systems are the same  

To do this, we assume that the lowest mode of vibration is 
dominant and therefore defines the deformation pattern in 
the structure  
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Example 1:  Lumped mass system  

4 kg 

2 kg 

2 kg 

200 N/m 

200 N/m 

200 N/m 

x 

y 

z 

x 

Objective: 
To find an approximate single-degree-of-freedom model to analyse 
the motion of the top mass of a 3-degree-of-freedom system  

m 

k 

The displacement of the model mass will be 
linked to the top mass, since that’s the point 
on the real system that we are interested in 

The values for m and k are found by equating 

the kinetic and strain energies in the real and 
model systems 
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4 kg 

2 kg 

2 kg 

200 N/m 

200 N/m 

200 N/m 

X 

Y 

Z 

X 
m 

k 

Real 
system 

Model 
system 

Equating max. kinetic energies in the real 
and model systems 

     2

2
12

2
12

2
1 ω2ω2ω4 ZYX 

 2

2
1 ωXm

Hence 
2

222 224

X

ZYX
m




Equating max. strain energies in the real 
and model systems 

     2

2
12

2
12

2
1 200200200 ZZYYX 

 2

2
1 Xk

Hence 
    

2

222
200

X

ZZYYX
k






23 

To get values for m and k, we need an estimate for the mode shape 

2

222 224

X

ZYX
m




Characteristics: 

 All masses move in phase with each other 

  X > Y > Z 

    
2

222
200

X

ZZYYX
k




4 kg 

2 kg 

2 kg 

200 N/m 

200 N/m 

200 N/m 

X 

Y 

Z 

Choice #1 






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
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






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
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

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










1

2

3

Z

Y

X Since all springs have 
the same stiffness, we 
might guess that they 
all deflect by the same 
amount 

m = 5.11 kg   and   k = 66.7 N/m 
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4 kg 

2 kg 

2 kg 

200 N/m 

200 N/m 

200 N/m 

X 

Y 

Z 

Choice #2 
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



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




































2

3

4

Z

Y

X

Bottom spring supports 8 kg, whereas 
top spring only supports 4 kg 

So let’s guess that the deflection in the 
bottom spring is twice the others 

m = 5.63 kg   and   k = 75.0 N/m 
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4 kg 

2 kg 

2 kg 

200 N/m 

200 N/m 

200 N/m 

X 

Y 

Z 

Choice #3  Static deflected shape 

m = 5.60 kg   and   k = 71.6 N/m 

= 1 unit Deflection = 
200

4 g

Deflection = = 1.5 units 
200

6 g

Deflection = = 2 units 
200

8 g























































2

5.3

5.4

Z

Y

X

Hence 
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Q1: Which model is best?    Q2: How do we know? 

Guess # 
m 

(kg) 

k 

(N/m) 

wn 

(Hz) 

1 5.11 66.7 0.575 

2 5.63 75.0 0.581 

3 5.60 71.6 0.569 

One test is the accuracy of the natural frequency predicted by the model 

On this basis, #3 (based on static deflection) is best 























































0.2

75.3

02.5

Z

Y

X

m = 5.43 kg   and   k = 68.8 N/m 

Note that the exact mode shape is 
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Q1: Which model is best?    Q2: How do we know? 

0

0.01

0.02
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0.04

0.05
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0.07

0.08

0.09
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R
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m
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)

Choice #1

Choice #2

Choice #3

Exact shape

FRFs predicted by all models are similar 
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x 

y 

z 

x 

m 

k 

The aim of developing the 1DoF model is to use it to predict the 
response of the real system 

Finding        from the model will tell us how the top mass will respond  tx

We have assumed that the motion of the real 
system is defined by the chosen mode shape, so 

not only does the model predict x(t), it also gives 

the motion of the other coordinates since they are 
all linked by the mode shape 

 ZYX ::

In this example, we can get y(t) and z(t), since 

each is related to x(t) in proportion to the mode 

shape 
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Example 2:  Forced response of a cantilever beam  

Objective: Use a single-degree-of-freedom model to estimate the 
steady-state response at the free end of a uniform 
cantilever beam due to a sinusoidal force with a frequency 
near the lowest natural frequency of the beam 

F cos wt  

y(L, t) ? 

There are two stages 

1. Set up the approximate model 

2. Use it to do the steady-state 
response calculation  

z(t) 

m 

k 

F cos wt  
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x 
F cos wt  

y(x, t)  y(L, t) = z(t)  

m 

k 

F cos wt  

We must link the displacement of the model mass to 
that at the free end of the cantilever 

In terms of the chosen displacement variables,  y(L, t) = z(t)  

For steady-state, sinusoidal vibration, the link can be written as  

  tLYtZ ωcosωcos   LYZ or 

To proceed, we need to choose an expression for the deflected shape 
of the cantilever  

Stage 1:  Set up the model  
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Choice #1    2xCxY 

We must find the value of C that links the two systems  

2LCLYZ  






2L
ZC Hence   2

2
x

L
ZxY and 

 xYThis expression for         is used to calculate the maximum kinetic and 
strain energies in the beam 

Equating each with the equivalent expressions for the single-degree-
of-freedom model gives the required mass and stiffness values 

Thus     22

2
122

2
1

max ωdρω
0

ZmxxYAT

L

 

Hence, the model mass is  LAm ρ2.0
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Equating the strain energies, gives the model stiffness  
3

4
L

IEk 

Applying the natural frequency test to the approximate model,  

A

IE

Lm

k
n

ρ

47.4
ω

2
we find that 

This is the same (poor) result obtained with Rayleigh’s Method 
using this choice for  
 
 
For instance, from your previous courses you would have found 
that the stiffness of a uniform cantilever beam is  
 
 

 xY

3
3

L
IEk 
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Choice #2    Static deflected shape,  















2234
64 xLxLxCxY

and 

Equating the kinetic and strain energies, the model mass and 
stiffness values are 

LAm ρ257.0
3

20.3
L

IEk 

A 

I E 

L 
n 

ρ 

54 . 3 
ω 

2 
 The natural frequency test in this case gives  

This is lower than the result from the first choice, confirming that the 
static deflection shape is the better approximation  

Linking this expression at x = L with Z, we get  

    4444 364 LCLLLCLYZ 

43L

Z
C Hence,     2234

4
64

3
xLxLx

L

Z
xY  and   

.   

(A) 
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Stage 2:  Forced response analysis  

x 
F cos wt  

y(x, t)  y(L, t) = z(t)  

m 

k 

F cos wt  

The equation of motion for the model is   t F  =z   k    z m 

Put and   tFtF ωei   tZtz ωe* i to give  2ω
 

mk

F
Z

*




Since there is no damping in this model, Z* is real   

Hence, the response to  F cos wt  is  
 

t
mk

F
tz ωcos

ω
 

2

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This is the model’s prediction of the steady-state response at the 
free end of the cantilever  

From the assumed deflected shape of the beam (eqn. A), we can 
find the vibration amplitude at any point along its length  

In the case of Choice #2  

    txLxLx
mkL

F
txYtxy ωcos64

ω3
ωcos, 2234

24 































x 
F cos wt  

y(x, t)  y(L, t) = z(t)  

m 

k 

F cos wt  

 
 

t
mk

F
tz ωcos

ω
 

2


   2234

4
64

3
xLxLx

L

Z
xY  and   
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In this case, there is a significant difference between the two models 
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For sinusoidal 
excitation, the 
1DoF model  
works well at 
low frequencies 

It can also give 
useful predictions 
for some non-
sinusoidal cases 

Vibration Isolation.ppt
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http://www.youtube.com/watch?feature=player_embedded
&v=pp89tTDxXuI  

http://www.youtube.com/watch?v=3CR5y8qZf0Y&fe
ature=youtu.be  

Videos shown in class for fun time allowing. 
 
To achieve this feat EZH started with a 2D mathematical model. The goal 
of the model was to understand what motion a quadrocopter would need 
to perform to throw the pendulum. In other words, what is required for 
the pendulum to lift off from the quadrocopter and become airborne? 
This first step allowed to determine (theoretical) feasibility. In addition, it 
showed the ideal trajectory in terms of positions, speeds, and angles the 
quadrocopter needed to follow to throw a pendulum. And it offered an 
insight into the throwing process, including identification of its key design 
parameters. 
 
The main goal of the next step was to determine how well the theoretic 
model described reality: How well does the thrown pendulum’s motion 
match the mathematical prediction? Does the pendulum really leave the 
quadrocopter at the pre-computed time? How does the pendulum behave 
while airborne? How well do assumptions for catching the pendulum 
(e.g., completely inelastic collisions, completely rigid pendulum, infinite 
friction between quadrocopter and pendulum when balancing) hold? 

http://www.youtube.com/watch?feature=player_embedded&v=pp89tTDxXuI
http://www.youtube.com/watch?feature=player_embedded&v=pp89tTDxXuI
http://www.youtube.com/watch?v=3CR5y8qZf0Y&feature=youtu.be
http://www.youtube.com/watch?v=3CR5y8qZf0Y&feature=youtu.be

