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CONTROL: EXERCISE SHEET 0 

1. Determine the Laplace transform 𝐹(𝑠) of 𝑓(𝑡), if: 

a) 𝑓(𝑡) = 0.5
𝑑𝑥

𝑑𝑡
+ 4𝑥, and 𝑥 = 4 when 𝑡 = 0 

b) 𝑓(𝑡) =
𝑑2𝑥

𝑑𝑡2 + 0.1
𝑑𝑥

𝑑𝑡
+ 3𝑥, and 𝑥 = 10 and 

𝑑𝑥

𝑑𝑡
= 2 when 𝑡 = 0 

c) 𝑓(𝑡) =
𝑑3𝑥

𝑑𝑡3 +
𝑑2𝑥

𝑑𝑡2 + 0.1
𝑑𝑥

𝑑𝑡
+ 3𝑥, and 𝑥 = 0,

𝑑𝑥

𝑑𝑡
= 0,

𝑑2𝑥

𝑑𝑡2 = 0 when 𝑡 = 0 

 

2. a) Use Laplace transforms to determine the solution to the following differential equation in the 

time domain (i.e. 𝑥(𝑡)) 

𝑑2𝑥

𝑑𝑡2
+ 0.1

𝑑𝑥

𝑑𝑡
+ 𝑥 = 𝑓(𝑡) 

Where 𝑓(𝑡) is a unit step and the initial conditions are taken to be zero 

b) Determine the transfer function 𝐺(𝑠) of the system analysed in (a) taking 𝑓(𝑡) to be the input and 

𝑥(𝑡) to be the output of the system. 

 

3. Determine the transfer function for the following, where 𝑥𝑖 is the input and 𝑥𝑜 is the output 

a) 
𝑑2𝑥𝑜

𝑑𝑡2 + 2𝜁𝜔𝑛
𝑑𝑥𝑜

𝑑𝑡
+ 𝜔𝑛

2𝑥𝑜 = 𝑥𝑖  

b) 𝑇𝑥�̇� + 𝑥𝑖 = 𝑥𝑜 

c) 
𝑑4𝑥𝑜

𝑑𝑡4 + 3
𝑑3𝑥𝑜

𝑑𝑡3 + 2
𝑑2𝑥𝑜

𝑑𝑡2 + 2
𝑑𝑥𝑜

𝑑𝑡
+ 𝑥𝑜 = 2

𝑑𝑥𝑖

𝑑𝑡
+ 5𝑥𝑖 

 

Answers: 

1. a) 𝐹(𝑠) = (0.5𝑠 + 4)𝑋(𝑠) − 2 

b) 𝐹(𝑠) = (𝑠2 + 0.1𝑠 + 3)𝑋(𝑠) − 10𝑠 − 3 

c) 𝐹(𝑠) = (𝑠3 + 𝑠2 + 0.1𝑠 + 3)𝑋(𝑠) 

 

2. a) 𝑥(𝑡) = 1 −
𝑒−0.05𝑡

√1−(0.05)2
sin (𝑡√1 − (0.05)2 + cos−1 0.05) 

b) 𝐺(𝑠) =
1

(𝑠2+0.1𝑠+1)
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CONTROL: EXERCISE SHEET 1 

1. Derive expressions for the transfer functions that relate input force 𝐹(𝑡), and output displacement 

𝑥(𝑡), of the spring and mass systems shown in figures 1a and 1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1(a). Spring System   Figure 1(b). Mass System 

 

c) Derive an expression for the transfer function 𝐺(𝑠) of a system that combines the spring and mass systems 

in parts (a) and (b). 

 

2. Derive expressions for the transfer functions that relate input torque 𝑇(𝑡) and output angular 

displacement 𝜃(𝑡) of the torsional system shown in figure 2, for the following cases: 

a) The block has negligible mass  

b) The block has a moment of inertia  𝐼 

Note that the torsional stiffness of the mass-less bar is𝑘𝑇 and the directions of 𝑇(𝑡) and 𝜃(𝑡) are 

similar, as shown in the figure. 

 

 

 

Figure 2. Torsional System 
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3. Derive expressions for the transfer functions that relate input  𝑥𝑖, and output 𝑥0, of the spring/mass 

systems shown in figures 1a and 1b. 

 

 

 

 

 

 

 

 

  Figure 1a    Figure 1b 

 

4. Figure 2 shows three rigid shafts that are geared together by gears having 𝑁1, 𝑁2, 𝑁3, 𝑁4 teeth as 

shown. Two of the shafts carry rotors having moments of inertia 𝐼1 and 𝐼2 as shown. Inertia of the gear 

wheels is negligible. Derive an expression for the transfer function that relates the rotation 𝜃3 of the 

output shaft to the torque 𝐿1 applied to the input shaft. 

 

Input shaft 

 

 

 

Figure 2 

 

5. Derive expressions for the appropriate transfer functions for the tank systems shown in figures 3 a), b) 

and c). taking the input and output to be as indicated in the following table: 

System Input Output 

3a 𝑞𝑖 ℎ1 

3b 𝑞𝑖 ℎ2 

3c 𝑞𝑖 ℎ3 

 

Where 𝐴1, 𝐴2, and 𝐴3 are tank cross sectional areas; ℎ1, ℎ2, and ℎ3 are the liquid heights as indicated; 
𝑞𝑖, 𝑞, and 𝑞𝑜 are volume flow rates; and 𝑅1, 𝑅2, and 𝑅3 are linearised flow resistances.  

For systems 3a) and 3b) it should be noted that the volume flow rate (q) through the restrictor tap 
(denoted by a cross) is given by:  

𝑞 =
ℎ

𝑅
 

where ℎ is the height of liquid in the tank and 𝑅 is the linearised flow resistance.  
In system 3c) the volume flow rate 𝑞 through the restrictor tap is related to the difference in liquid 
"head" across it by an equation of the form: 

𝑞 =
ℎ1 − ℎ2

𝑅1
 

 
where ℎ1,  and ℎ2 are the liquid heights in two adjacent, connected tanks, and 𝑅1 is the linearised flow 

resistance between the connected tanks. 
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Figure 3 a)       Figure 3b)  

 

 

 

 

 

 

 

 

Figure 3 c)  

 

 

 

 

 

 

 

Answers:  

1. a) 𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑘
 

b) 𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚𝑠2 

c) 𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚𝑠2+𝑘
 

 

2 a) 𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑘𝑇
 

b) 𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝐼𝑠2+𝑘𝑇
 

 

3 a) 𝑋0

𝑋𝑖
=

𝐾

(𝑀𝑠2 + 𝐾)
 

3 b) 𝑋0

𝑋𝑖
=

𝐾1𝐾2

𝑀1𝑀2𝑠4 + 𝑠2(𝑀2(𝐾1 + 𝐾2) + 𝑀1𝐾2) + 𝐾1𝐾2
 

4 
Θ3

L1
=

(
N2N4
N1N3

)

[I2 + I1 (
N4
N3

)
2

] 𝑠2

 

5 a) 𝐻1(𝑠)

𝑄𝑖(𝑠)
=

𝑅1

(1 + 𝑇𝑠)
 

, where 𝑇 = 𝐴𝑅 

5 b) 𝐻2(𝑠)

𝑄𝑖(𝑠)
=

𝑅2

(1 + 𝑇1𝑠)(1 + 𝑇2𝑠)
 

, where 𝑇1 = 𝐴1𝑅1 and 𝑇2 =
𝐴2𝑅2 

5 c) 𝐻2(𝑠)

𝑄𝑖(𝑠)
=

𝑅2

𝐴1𝐴2𝑅1𝑅2𝑠2 + (𝐴1(𝑅1 + 𝑅2) + 𝐴2𝑅2)𝑠 + 1
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Sheet 2: Block Diagram Manipulations 

For Questions 1-5, determine the overall transfer function for 𝑅(𝑠) to 𝐶(𝑠). 

1.  

 

 

 

 

 

 

2.  

 

 

 

3.  

 

 

 

4.  

 

 

 

 

5. 

 

 

 

 

𝑅(𝑠) 𝐾

𝑠
 

𝐾1 = 1 

2

𝑠 + 2
 

𝐷(𝑠) 

𝑁(𝑠) 

𝐶(𝑠) + 

− 
+ 

+ 

− 

− 

𝑅(𝑠) 
𝐺(𝑠) 

𝐶(𝑠) + 

− 

𝑅(𝑠) 1

𝑠 + 5
 

1

𝑠 + 10
 

𝐶(𝑠) 

+ 

− 
+ 

− 

𝑅(𝑠) 𝐾1

𝑠 + 1
 

1

𝑠
 

𝐶(𝑠) + 

+ 

+ + 

𝐾2 

𝐺2 
𝑅(𝑠) 𝐶(𝑠) + 

− + 

+ 

𝐺1 

𝐻2 

𝐻1 



6. A system of two tanks similar to the second laboratory experiment (yet different) is shown in figure 7. 

 

 

 

 

 

 

Figure 7 

T represents temperature and Q is the heat input. Determine the overall transfer function for the system 

𝐺(𝑠) =
𝑇2(𝑠)

𝑇0(𝑠)
 

Answer: 

𝐺(𝑠) =
𝑇2(𝑠)

𝑇0(𝑠)
=

1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1) + 0.01
 

8. A control system to maintain the speed of a motor is shown in figure 8.  

 

 

 

 

 

Figure 8. 

The motor has a transfer function of 𝐺(𝑠) =
1

𝑠+3
. 

Determine the overall transfer function of the system with 𝜔𝑑 to 𝜔. 

Answer: 

𝐺(𝑠) =
𝜔(𝑠)

𝜔𝑑(𝑠)
=

𝐾𝐺(𝑠)

𝑠 + 𝐾1𝐾𝐺(𝑠)
 

 

  

𝑄(𝑠) 𝑇2(𝑠) 

+ 
− 

+ 

+ 

𝐺𝑐(𝑠) 

1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
 𝑇0(𝑠) 

0.01

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
 

𝑇2𝑑(𝑠) 

𝐺(𝑠) 
𝜔𝑑(𝑠) 𝜔(𝑠) + 

− 
+ 

− 𝐾

𝑠
 

𝐾1 

𝐷(𝑠) 
Speed 
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1. A hydraulic servo system for positioning a large mass is shown in Figure Q1. The area 
of the ram (piston) is 0.01m2 and the pump delivers 0.2m2/sec per metre 

displacement in y direction to the appropriate side of the ram piston.  
Determine the transfer function for the system and then calculate: 

 

a. The steady state gain and time constant of the system;  

 

b. The error 1 second after a unit step input;  
 

c. The steady state velocity lag when the input xi is a ramp of uniform velocity of 

0.01m/sec. 
 

 
Figure Q1 
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2. Figure Q2 illustrates a simple system for controlling the level of liquid in a tank with 

uniform cross-sectional area A. The error signal 𝜀 is derived by comparing the actual 

height ℎ with the desired level ℎ𝑖, and is fed to a controller which drives a variable 

speed pump such that the controlled volumetric inflow rate 𝑞𝑖 to the tank is given by: 
𝑄𝑖(𝑠) = 𝐺𝐶(𝑠)ε(𝑠) 

 

where 𝐺𝐶(𝑠) is the transfer function of the controller. In addition, there is an 

uncontrolled disturbance inflow to the tank given by 𝑄𝐷(𝑠). The tank outflow passes 

through a restriction with linearised flow resistance 𝑅. 

For the case when the controller is a proportional controller with gain 𝐾, such 

that 𝐺𝐶(𝑠) = 𝐾: 

 
a. Derive the overall transfer function relating ℎ to ℎ𝑖 and 𝑄𝐷 and show that the 

system is first order; 

 

b. If the tank area 𝐴 =  2 and the flow resistance 𝑅 = 10 in consistent units, find the 

required value of the controller gain 𝐾 to give a system time constant of 5 seconds.  

 

Figure Q2 

Answers: 

1 a)  10, 0.45 sec 

 

b) 1.08 c) 0.045m  

2 a)   
𝐾𝑅𝐻𝑖(𝑠)+𝑅𝑄𝐷(𝑠)

1+𝐾𝑅+𝐴𝑅𝑠
 

b) K=0.3  
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qi 
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h 
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1. Figure 1 shows a mass-damper-spring system with an applied force p(t). 

a. Derive the transfer function G(s) that relates the applied force p(t) to the velocity 

of the mass, v(t). Let the Laplace Transform of p(t) and v(t) to be P(s) and V(s), 

respectively.  

b. Determine the steady state velocity response of the mass when a step input force is 

applied to the system. The magnitude of the step input is α.  

c. Determine the steady state velocity response of the mass when a ramp input force 

p(t)=σt, is applied to the system.  

 
Figure 1. 

2. For the system described in Q1, a control system is designed to regulate the velocity of 

the mass, using a proportional controller, 𝐾𝑐(𝑠) = 𝐾, with a reference velocity 𝑉𝑅(𝑡). The 

block diagram representation of the control system is shown in Figure 2. There are two 

different forces applied to the mass: the disturbance force, 𝐹𝑑(𝑡), and the control force, 

𝐹𝑐(𝑡). 
a. Determine the transfer function from the reference velocity 𝑉𝑅(𝑠) to the velocity of 

the mass 𝑉(𝑠). Draw the corresponding block diagram.  

b. Determine the transfer function from the disturbance force 𝐹𝑑(𝑠) to the velocity of 

the mass 𝑉(𝑠).. Draw the corresponding block diagram.  

c. What is the effect of the proportional control gain to the system damping?  

 
Figure 2. 

  

𝑚 

𝑥 

𝑝(𝑡) 

𝑘 𝑐 

𝑉𝑅(𝑠) 𝐾𝑐(𝑠) 𝐺(𝑠) 𝑉(𝑠) 

+ 
− 

+ 
+ 

𝐹𝑑(𝑠) 

𝐹𝑐(𝑠) 𝑃(𝑠) 



3. Figure 2a shows a system for controlling the azimuth angle of a large antenna aerial. 

The block diagram for the system is given in figure 2b. The input signal is provided by 

the input potentiometer, which develops 0.05 Volts per degree change in input 𝜃𝑖. The 

angular position of the aerial is measured by a similar potentiometer that also generates 

0.05 Volts per degree change in the aerial position 𝜃𝑂. The resulting differential error 

voltage is fed into the power amplifier which delivers a current to the motor with a gain 

of 200 Amps/Volt. The servo motor develops a torque of 0.5N/Amp and the moment of 

inertia of the rotating parts of the motor is 0.2 kg m2. The gear ratio of the reduction 

gear between the motor and the antenna turntable is 10:1 and the moment of inertia 

of the aerial assembly about the turntable axis is 10 kg m2. 

A viscous damping torque of 100Nm/(rad s-1) opposes the rotation of the aerial. 

 
Figure 2a. Antenna Azimuth Control System (adapted from Nise, 2000) 

a) Draw the block diagram for the system and derive the overall transfer function 

relating 𝜃𝑂 and 𝜃𝑖. 

b) Calculate the system damping ratio 𝛾. 

c) Find the magnitude of the first overshoot which results from a step input 𝜃𝑖 = 10° 
d) Find the steady state velocity error which results from the ramp input 𝜃𝑖 =

0.1𝑡 radians (for t>0). 
 

 Answers: b) 𝛾 = 0.176 c) 5.8°  d) 0.2° 

  



MM2DYN 2018      CONTROL: Exercise Sheet 5 

 

 
 SHEET 5: STABILITY OF FEEDBACK SYSTEMS  
 

1. The characteristic equation of a feedback control system is 

𝑠3 + (5 + 𝐾)𝑠2 + 7𝑠 + 18 + 9𝐾 = 0 

a. Determine the maximum positive value of K, below which the system is stable. 

b. Determine the frequency of oscillations at this value of K.  

2. A unity feedback control system is shown in Figure Q2.  

 

Figure Q2 

Where r is a reference signal and c is the system response. 

The forward loop transfer function is given by:  

𝐺(𝑠) =
3(𝑠 + 4)(𝑠 + 8)

𝑠(𝑠 + 5)2
 

Determine the relative stability of the system. 

 

3. A closed loop feedback control system is shown in figure Q3. 

 

Figure Q3 

Where r is a reference signal and c is a system response. The transfer functions for 

the forward and feedback loops are given by: 

𝐺(𝑠) =
𝐾(𝑠 + 40)

𝑠(𝑠 + 10)
                                𝐻(𝑠) =

1

𝑠 + 20
 

Use the Routh-Hurwitz stability criterion to determine the values of K for which the 

closed loop system will be stable. 

𝑅(𝑠) 
𝐺(𝑠) 

𝐶(𝑠) + 

− 

𝑅(𝑠) 
𝐺(𝑠) 

𝐶(𝑠) + 

− 

𝐻(𝑠) 



 

4. The transfer function of a control system is as follows: 

𝐺(𝑠) =
1

𝑠3 + 5𝑠2 + 20𝑠 + 6
 

 

a) Is the system stable? 

b) Use the final value theorem to calculate the unit step response of the system. 

  



Table of Laplace Transforms 

𝑓(𝑡) 𝐹(𝑠) 

1 
𝑑𝑓(𝑡)

𝑑𝑡
 𝑠𝐹(𝑠) − 𝑓(0) 

2 
𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
 

𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓1(0) …
− 𝑓𝑛−1(0) 

3 ∫ 𝑓(𝑡)𝑑𝑡 
1

𝑠
𝐹(𝑠) 

4 Unit impulse 𝛿(𝑡) 1 

5 Unit step 1 
1

𝑠
 

6 Unit ramp 𝑡 
1

𝑠2
 

7 𝑒−𝑎𝑡 
1

𝑠 + 𝑎
 

8 1 − 𝑒−𝑎𝑡 
𝑎

𝑠(𝑠 + 𝑎)
 

9 𝑡 −
1

𝑎
(1 − 𝑒−𝑎𝑡) 

𝑎

𝑠2(𝑠 + 𝑎)
 

10 sin(𝜔𝑡) 
𝜔

𝑠2 + 𝜔2
 

11 cos(𝜔𝑡) 
𝑠

𝑠2 + 𝜔2
 

12 𝑒−𝑎𝑡 sin(𝜔𝑡) 
𝜔

(𝑠 + 𝑎)2 + 𝜔2
 

13 𝑒−𝑎𝑡cos(𝜔𝑡) 
𝑠 + 𝑎

(𝑠 + 𝑎)2 + 𝜔2
 

14 
1

(𝜔2 − 𝑝2)
[sin(𝑝𝑡) −

𝑝

𝜔
sin(𝜔𝑡)] 

𝑝

(𝑠2 + 𝑝2)(𝑠2 + 𝜔2)
 

15 
1

(𝜔2 − 𝑝2)
[cos(𝑝𝑡) − cos(𝜔𝑡)] 

𝑠

(𝑠2 + 𝑝2)(𝑠2 + 𝜔2)
 

16 
𝜔

√1 − 𝛾2
𝑒−𝛾𝜔𝑡 sin (𝜔𝑡√1 − 𝛾2) 𝜔2

𝑠2 + 2𝛾𝜔𝑠 + 𝜔2
 

17 1 −
𝑒−𝛾𝜔𝑡

√1 − 𝛾2
sin (𝜔𝑡√1 − 𝛾2 + 𝜑) 

𝜔2

𝑠(𝑠2 + 2𝛾𝜔𝑠 + 𝜔2)
 

18 𝑡 −
2𝛾

𝜔
−

𝑒−𝛾𝜔𝑡

𝜔√1 − 𝛾2
sin (𝜔𝑡√1 − 𝛾2 + 𝜑) 

𝜔2

𝑠2(𝑠2 + 2𝛾𝜔𝑠 + 𝜔2)
 

 Where cos 𝜑 = 𝛾  

 


