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 Fundamentals of Alternating Current — or AC
« DC v AC circuit study — waveforms a function of time!
« Sinusoidal waveform — voltage & current
« Complex Numbers
« AC circuits
« Phasor study — simple way to solve time-varying circuits
* Resistor, Inductor, Capacitor in phasor form - CIVIL
 Reactance — Purely reactive circuits (just inductor/capacitor)
 Impedance — Resistance & Reactance
« Power in AC circuits
« Active v Reactive v Apparent Power
* Power Factor
« Resonance
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Direct Current Alternating Current
Current flowing in only one direction Direction of current flow changes periodically
e.g., battery e.d., generator

Sine wave Complex wave

+ +
% time \/\/‘ = time
-\

Triangular wave Square wave

+V +V
% time 0 | ; 1 | » time

Abbreviations AC and DC are often used to mean simply alternating and
direct, i.e., reference to just current dropped
e.g., AC voltage, DC current etc.

=
=

Amplitude
=

Amplitude
=
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Representation of any physical variable as a function of time on a graph
(We would discuss only electrical variables like voltage and current)

Magnitude (y-axis) and time (x-axis)

Complex wave

Sine wave
+Y +V
@ .
3 Other waveforms like
Sine W 50 fime 0 — ™ triangular, sawtooth
E ) )
.me : a\{e (or < \/\/ and square are
sinusoid) is the .
most interestin v -V abundantly used in
d b 9 Triangular wave Square wave electrical engineering —
— We would be -V V they can all be
studying this = represented as a sum
=0 time 0 - time of infinite number of
z sinusoids (check out
v v Fourier Series!)
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Why is Sine wave interesting?

Occurs in nature Fourier Series — Every waveform is Motors & Generators translate
: : made up of sinusoids rotation and voltage — projection of
Wind, sound and light waves : : : . :
N : J a rotating object is a sinusoid!
are sinusoidal
III"._‘ _.'-'rll "-.' ! ~ -
\../"J. i .."'\ /'Ill i
I
Fswees 1 If'\-fVI A -,-'v‘-f"ll -
- |
Light — : T eyil)
source Polarising filter | | I | .-"'""-i_"‘-. :})z[w
/Polarisedlight N 7 v ;', .'r___‘: . "'.‘r
Unpolarised light _::_._,_ :
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Sinusoid is a mathematical curve defined in x1(t) =cost x(t) =sint

terms of the sine trigonometric function \
TN T N ] I L
Sine and Cosine are both examples of Hr \ 7TV \ NS = /TN |-
sinusoid 075 ¢ o ffAcosx=—f A '
: , :
I AT VAV VAT W
i ) ) : . . = I \ / \ I \ ]
Cosine function is simply the Sine function, 025 7 / : \ f / i \ / / Y \ :
| ’ —
but 90° advanced 0.00 f-r—F L / \ / .
025 3 \\"1 / / “ !ll \ R
. . . g I | \ \ b
We will use the Cosine function to 050 [ \ \ ! / \ \ / | \
. - / .
represent variables ok &’ / ‘\\ l\f / \ \j / \ |-
: y :
100 | /\/ \L/ \/ \ / \/ NE
' AT BT P B A B B B A B B B B B e
?eq uen Cy Ph ase =3 _5?1? =2 _3?11’ - _% 0 g o 3717 21 5717 3
LT = Angle
y(t) = Acas(wt + ¢)
/7 e \
. Phase
Variable as
offset

function of time Amplitude
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45° 90° 135° 180° 225° 270° 315° 360°
—7—7

SNE] S
N -
w
S
3
w1
S
w
S
\1
S
N
3

= A cos(0)
= Asin(0)
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135° 180° 225° 270° 315° 360°

- T I T

Notice \ \f’ /
this is a A 7 \ /
. L 5
negative ~ | _~

value!

SNE] S
N -
w
S
3
w1
S
w
S
\1
S
N
3

: Xcos = Acos(0)

Xsin = Asin(0)
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T
2 . 0 -
< >!
0° 45° 90° 135° 180° 225° 270° :315° 360°
— — 7
\ 1 V.
! Vs
! rd
| r 4
N 4
\ | 7
I """ N AN 4
x A
0 cos A Y 4 i
\\‘ ’I’ '
‘\— 1 !’ i /
L Y I J 1
\ \ 4 : /
Xsin \‘\ ;’ :
Notice N 4 i /
this is a R ras ‘
negative : 1 S e |//.
value! 0 T T 3 i RY/4 3n  7m 2
4 2 4 4 2 4
= Xcos = Acos(0)

Xgsin = Asin(0)
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Maximum magnitude of the variable

Peak-to-peak Amplitude

N /f< b
NN /S -

@A A4

\/ | \/J /¢ t

X1 = Acoswt

X, = B cos wt

x3 = C cos wt
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Indicates how fast is the variable changing

Time taken (in s) to
perform one period, or
revolution

\
NN /\ /

F (Hz) = f Acos
requency(Hz) = f = — 2T X1 = Acos—
AT X, = Acos—t Al
AT,
Angular Speed(°%) = o = 2nf =
ngular pee(s)—w— nf—AT 2T

= Acos—t
X3 cosS AT,
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Phase angleatt =0

Phase Advance Phase Delay — subtract the angle

4
‘s
.,

%
ot

Phase Delay v -

t
Xp(t) = x(t — P)

Phase Advance — add the angle

V|
x, = A cos(wt — ¢5)
xp (1)
x1 = Acoswt H
® t

x3 = Acos(wt + ¢3) Xp(t) = x(t + @)
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v
/\\//.\‘ / x; = A cos wt x6=_ASin(wt+g)=—Acoswt
Add a Phase Delay of ~ f
7 ‘ Add a Phase Advance of%

/[
/- X, = A cos(wt — E) = Asinwt

T
Add a Phase Delay of > f

Xs = Acos (a)t + g) = —Asin wt

v ‘ Add a Phase Advance of%

/\ / : n
\/ \/ . x3 = Asin(wt — E) = —Acoswt x4 = Acoswt
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Imaginary

Solution of x% = —1
x =v—1 2j

x:j 1j

Real

Argand Plane, or complex
plane is used to represent =2
complex numbers in the _3
cartesian coordinate system
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Cartesian Form — Use the x & y coordinates Imaginary
to represent the complex number
4 +j3 Y

X + jy (general form)

Polar Form — Use the magnitude & angle to
represent the complex number

5237° =5 -4 -3 -2
V|20 (general form)

Exponential Form — Variation of Polar Form ~3j
5e/37° 4

|V |e/? general form)
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Imaginary
Cartesian to Polar Conversion
4j
V| = x2 + y?
1Y
O =tan 1=
X
. . -5 -4 -3 =2
Polar to Cartesian Conversion
x = |V|cos@ 2
y = |V|sin@ 3
_4_]
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Imaginary
Addition
4j

. _ x1 +Jjy1
Vi+Vy = (x1+jyd) + (xz2 +jy2)  V1]20,
Vi+Vy=(x1+x2) +j(y1 +y2)

Simply add the real terms and imaginary
Real

terms separately 5 —4
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: —X2 = Jy-~
Subtraction y V,|2(6, F_,i%mo)
V-V, = (x1 +_iy1) — (xz +]y2) 3 i [V1|204
Vi—Vy=(x1—x2) +j(y1 —y2) 25| & D '
1j
Simply subtract the real terms and 6, — 18075 g, :
imaginary terms separately 5 -4 -3 -2 -1 1 2 3 4 5 Real
! A
—2j
—3j
___________4__]'_
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S VXV, Imaginary
Multiplication

Vi xXVy = (x1+y1) X (x2 +y2j)
Vi X Vy = x1X3 + X1Y2j + y1X2 + Y1Y2)°
Vi XVy =x1X2 + X1Y2] + y1X2] + ¥1Y2(—1)
Vi XVy = (x1X2 —y1Y2) + (X1Y2 + y1X2)j

Real

Simpler method using Polar Form

Vi XV =[Vy||V2]4(01+02)V1 XV, ~2
= V1[04 X |V3 |20,
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Division
(x1 +jy1)
V=V, = -
1 2 (x2 +jy2)

_ (x1 +jy1) X (x2 — jy2)
(x2 +Jy2) X (x2 — jy2)
_ (x1x2 + ¥1Y2) — J(X1Y2 — Y1X32)

V1+V2

V1 - Vz (x% _ y%)

Simpler method using Polar Form
Vi+Vy=|V1|401 +|V3 |26,

Imaginary
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« AC circuits
* Phasor study — simple way to solve time-varying circuits
* Resistor, Inductor, Capacitor in phasor form - CIVIL
 Reactance — Purely reactive circuits (just inductor/capacitor)
 Impedance — Resistance & Reactance
« Power in AC circuits
« Active v Reactive v Apparent Power
* Power Factor
« Resonance
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Imaginary

V| cos @ + j|V|sin B

wave

V)40 N w2
I
| g ‘
1 =
1 5.
1 ’d\‘x’
1 S
1
I
1
1
: = Cosine wave
1
1
1
' Real .
2 3 4 5 B
¥

If we make 0 a function of time,
l.e., 0(t) = wt + ¢, we can use
the “maths” of complex numbers
to do the “electrical” of AC!

l
p

3pl2

2p
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Imaginary

V| sin(wt + ¢)

V| cos(wt + ¢p) + j|V| sin(wt + ¢)
V|4£(wt + )

wave

7d g
6 /e

d
Q
D
¢
3
D
2|
S
i
)

1j
I wt + ¢ |
-5 -4 -3 -2 -1 1 2 3 4 5
—1j|< >
|[V|cos(wt + ¢)

=
o
Q
(]
7/dg

dz

If we make 0 a function of time,
l.e., 0(t) = wt + ¢, we can use
the “maths” of complex numbers
to do the “electrical” of AC!

l
p

3pl2

2p
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Imaginary

V| sin(wt + ¢)

V| cos(wt + ¢p) + j|V| sin(wt + ¢)
V|4£(wt + )

wt + ¢

1 2 3 4 5

) |[V|cos(wt + qb)/

Say we have a voltage variable
v = |V|cos(wt + )

We may represent it with a
“phasor” which is nothing but a
complex number that
represents the initial position of
the rotating vector (i.e., att =
0), and say the “projection on
positive real axis” is the value
of the physical variable
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Imaginary * Aphasoris a complex number that
represents the initial position of a rotating
vector, i.e.,att =0

« Use the amplitude (]V]) and phase offset
(¢) of a cosine function

[V| sin ¢ « For all AC steady-state analysis, |V| and ¢
are all we need to get meaningful results
5 4 -3 —2 -1 12 3 4 5 Real . AC steady-state analysis — this assumes

frequency w does not change

I
£
A
v

For example, voltage v = 150 cos(50t + 25°) may be

represented in the phasor form as follows:
150
Numeric Form —1504£25° Visual Form — Sco
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Imaginary * Aphasoris a complex number that
represents the initial position of a rotating
vector, i.e.,att =0

« Use the amplitude (]V]) and phase offset
(¢) of a cosine function

[V| sin ¢ « For all AC steady-state analysis, |V| and ¢
are all we need to get meaningful results
\Z |
5 4 -3 —2 -1 12 3 4 5 Real . AC steady-state analysis — this assumes
_1jl< > frequency w does not change
|V|cos ¢
—2 For example, currenti = 10 cos(50t — %) may be
—3j represented in the phasor form as follows:
_4j Numeric Form — 102~ Visual Form — lz
6

10
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i « Convert all variables to
phasors or to complex form
n * Apply the usual — Kirchhoff’s
@ V cos(wt + ¢) R & Ohm’s Laws

« Solve the circuit like you did
earlier — only difference being
you are now using complex
numbers!
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120 +Convertallvariablesto
>
phasers-orto-complexform
n | * Apply the usual — Kirchhoff’s
@ Ved R+ j0 & Ohm’s Laws

« Solve the circuit like you did
earlier — only difference being
you are now using complex
numbers!
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120 +Convertal-variables-to
>
phasofrs-orto-complexform
+ +—Apphy-the-usual—Kirchhoff's
@TW‘/’ R +j0 & Ohm’s-Laws

« Solve the circuit like you did
earlier — only difference being

you are now using complex
numbers!

v =1IR
Veep =1R2LO

ILB—VA
=2 ¢
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Imaginary
128 i % 4
L : ¢ Real
Vi
/‘i
v =1IiR t
Vg = [IIRLH v =V cos(wt + ¢)
1240 = =2
R ¢ i=Kcos(a)t+q5)

R
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Phasors are not very useful for purely resistive circuits!

In resistive circuits, as there is no storage of energy in the resistive
element, the current is always in phase with the voltage

But what about reactive elements?

Due to energy storage (and release) from inductors and capacitors,
current is not in phase with voltage

This is where phasors come in handy — lets you avoid solving tedious
differential equations
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; di
We know for an inductor: v = Ld—;

v =V cos(wt + ¢,) = Vel (@t+¢v)

[ =1 cos(wt+ ¢;) i =1cos(wt + ¢;) = I/ @t+Pi)
>
Applying this: You do
, d(Ie)(@t+éi) not need
cos(w
> (wt + ¢y) Vel@ta e = La(rel@to0) calculus
here —
Vj el (@t+dy) 1t — LIJd(ej(wt+¢i)) thereis
an easy
way!
ej(wt+¢v) _ y
V—m78M = Lle](wt+¢i)
jw

Vel (@t+do) = jo] [l (@t+dD)

vV = jwlLi



University of

Nottingham | Phasors in Inductive Circuit

UK | CHINA | MALAYSIA

) di
We know for an inductor: v = Ld—;

v =V cos(wt + ¢,) = Vel (@t+év)

[2¢; i =1cos(wt + ¢;) = I/ @t+Pi)
>
Applying this:
J(wt+¢y)
n veitrey —  2Ue ' )
t

)NV, ]

<_>T v ]wL Vel(@t+dv) gt = Ld(Ie/ (@)

% j e/ (@t Pt = L] j d(e/(@t+P0)

ej(wt+¢v) _
V———— = LleJ(wt+di)
. w
Convert inductance to complex form J
Vel (@t+do) = jo] [l (@t+dD)

Solve using Ohm’s & Kirchhoff’s Laws . .
V= jJwlLl

You do
not need
to learn
calculus
here —
thereis
an easy
way!
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Ohm’s Law:
IV =1IR

But this needs to be generalised to incorporate complex
I.¢; “resistance” — reactance — symbol X

v=1iX
Veg, = 120X

n = 11
@TV‘ N il v, = 1ctjol

ja)_LL('b” = 1£¢;

Now remember complex number division:

[& 2|+ j1 = 124,

Convert inductance to complex form [LA%] +12£90° = I2¢;
wL

. : : ; |4
Solve using Ohm’s & Kirchhoff’s Laws EL(¢” —90°) = I2¢;
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V
12§ = — £(¢hy — 90°)

jowlL

In purely inductive circuit, the current

LAGS voltage by 90° or %radians

Phasors in Inductive Circuit

Imaginary

Real

v =V cos(wt + ¢,,)

/4
| = — t —90°
i chos(a) + ¢y, )
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Phasors in Capacitive Circuit

. d
We know for a capacitor: i = Cd—’t’

v =V cos(wt + ¢,,) = Vel (@t+¢)

i =1 cos(wt+ ¢;) i =1cos(wt + ¢;) = I/ @t+Pi)
>
Applying this: You do
, d(Vel(@t+év)y not need
~ L=C dt to learn
B V COS(wt + va) —— d(ej(a)t+¢v)) Calculus
i =CV ¥ here —
_ ‘ there is
L :ijVe](wt+¢v) an eaSy
way!
Li _ Vel (wt+dy) y
jwC
1 |
V= l

- jwC
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Convert capacitance to reactance

Solve using Ohm’s & Kirchhoff’s Laws

. .d
We know for a capacitor; i = Cd—’t’

v =V cos(wt + ¢,) = Vel (@t+év)

i = I cos(wt + ¢;) = I/ @t+P)

Applying this:
d(Vel(@t+év))
[ =C
dt
d(el(@t+éy)
[ =CV ( )
dt
i zijVej(wt'l'd’v)
L ity
jwC
1
D = l

- jwC

You do
not need
to learn
calculus
here —
thereis
an easy
way!
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Ohm’s Law:
IV =1IR

But this needs to be generalised to incorporate complex
I.¢; “resistance” — reactance — symbol X

v=1iX
Veg, = 120X

@TVA —— 1 Vs —IAq')-L
_ ¢v __i(l)_C v ‘ja)C

ViwCsg, = 14¢;
Now remember complex number multiplication:
[VwCsd,] X j1 = 1Lgp;
[VwCse,] X 1£90° = 12¢;
Convert capacitance to reactance VwCs(¢p, +90°) = 12¢;

Solve using Ohm’s & Kirchhoff’s Laws
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Imaginary

I£p; =VwCs(p, +90°) |_yuc 4
>

\900
¢V Real

In purely capacitive circuit, the current v =V cos(wt + ¢,)

o or Fradi
LEADS voltage by 90° or 5 radians i = VaC cos(wt + ¢, + 90°)
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Imaginary Imaginary
12, I2¢;
v I =VwC |4

~ T jwl & I .

C_) e 1 C_D el joC \900

qbv Real ¢V Real
90°
B V
X jwlL o X 1
L=] joC
current LAGS voltage by 90° or %radians current LEADS voltage by 90° or gradians

™~

ClIVIL

N
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It is practically impossible to have a
purely reactive circuit — any inductor or
R capacitor would have some parasitic

Md)i_NVVVV\ resistance values

Remember we discussed Impedance in

- 1 the previous lecture!
@de)v — o
jwC Impedance indicates how much a load

ol “impedes” or hinders the flow of
J® current through itself on application of
[YYYYYY) a set amount of voltage across it

1 Generalisation of Resistance — now

Impedance =Z =R + jowL + — Incorporates AC circuits as well
jwC

Ohm’s Law still applies!
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The Real Circuit (Resistive + Reactive)

Series

When two (or more) elements are
connected together head-to-toe

I
Vl'r' Zl

A

V Vz'r Zz

Parallel

When two (or more) elements are
connected head-to-head and toe-
to-toe

Series-Parallel

Combination of the both

Break the circuit up into series and
parallel and solve individually
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R =10Q

20V
50Hz

L =20mH

Imaginary

I1=0.3434

80.11°

I29i  ANMAM

C =

20V

S50uF =

> Real

Zp = 10Q
Z; = jwL = j2nfL = j2 X 3.14 x 50 X 20 x 1073 = j6.28Q
1 1 —j

7. L _ _ — —j63.66Q
€= iwC  j2nfC 2x314x50x50%x 106 J

The three elements are clearly in series
Z=7p+Z +Z,=10+j(6.28—-63.69) =10 —j57.38

Applying Ohm’s Law, we need to divide V by Z, remember, for division, we
need complex numbers in polar form

When no info on
phase offset for

|Z| = \/102 + 57.41%2 = V3395.91 = 58.24

—57.41 i
_ -1 _ o voltage provided,
4Z =tan 10 —80.11 no harm in setting

it to 0°, makes
Applying Ohm’s Law calculations
v 20.,0° easier!
L
I=— = 0.343480.11°

Z 58.247 —80.11°
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e Power in AC circuits
« Active v Reactive v Apparent Power
« Power Factor
« Resonance
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In mathematics, the root-mean-square (or RMS) of a set of numbers x; is defined as the square root
of the arithmetic mean of the squares of the set

jx12+x§+x§+---+xg \/le-z
X = =

n n

 When dealing with AC applications, the amplitude of voltage or current is seldom used (we will see
shortly why — power)

 Hence, AC ammeters/voltmeters are invariably calibrated for RMS value — not peak/amplitude

* For all sinusoidal waves, the RMS value is \/—15 = 0.707 times the amplitude

» Itis much more convenient to make the length of phasors represent RMS instead of amplitude

« Going forward, we will deal with only RMS values when studying AC

| %4
RMS value of V=V,,s = u =0.707V

V2
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i(t
ON
p
_I_
) v(t) R
v(t) =V cos wt v
i(t) =1coswt
Instantaneous power Average power — integrate over full cycle
Vi
p(t) = v(t) xi(t) Povg = j7 (1 + cos2wt)
p(t) =V coswt X I cos wt VI
VI I2 V2 favg =75 +0
p(t)=7(1+c032wt)=T(1+c052wt)=ﬁ(1+c052wt) p —V—mI—m—V ;
avg \/E\/E rms*rms
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Proof (don’t learn)

1"
Pavg=TJ p(t)dt VmIm
1 F)T Pavg — T\/_— = Vimslrms
—— | v)i(e) dt 2V2
T J,
1 (T
= T V cos(wt)I cos( wt) dt
1 FT VI Remember that power in DC circuits
:?J 7{1+cos(2wt)}dt P =Vgcx1qc
0
1 (Tvi 1 ("L, Equivalently, the AC counterparts for
= ?Jo 7dt + Tjo > {cos(2wt)} dt VaciS Vyems and I, 1S Ly
2T
— _1 Vinm {cos(2wt)} dwt That is why we always use the RMS
2  wT), 2 value of voltage and current

2 - Vrms Irms
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Power Iin Inductive Circuit

i(6),

v(t) =V cos wt

Do you know why?
i(t) = I sin wt —

Instantaneous power

p(t) = v(t) X i(t)
p(t) =V coswt X I sinwt

wLl? v:
sin 2wt = Z—stm 2wt

VI
p(t) = 7sin 2wt =

Energy absorbed from the source

Energy released to the source

N

Average power is ZERO!
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v(t) =V cos wt

[

Do you know why? \

371;
)7 Y

Do you know why?
i(t) = —Isin wi

Instantaneous power

p(t) = v(t) x i(t)

p(t) = =V coswt X I sin wt

IZ

p(t) = Tsin 2wt = Z_CSin 2wt =

w

sin 2wt

/’///

2

Energy absorbed from the source

7
/ Energy released to the source
74

Average power is ZERO!



» University of . . . . . .
!", Nottingham | Power in Real Circuit (Resistive + Reactive)

UK | CHINA | MALAYSIA

i(t), |
Iv(t) Z |
v(t) = V cos wt y V
i(t) =I1cos(wt+7y) ! l
Instantaneous power

p(t) = v(t) x i(t)
p(t) =V coswt X I cos(wt + y)

Vi
p(t) = —{cos(wt — wt — y) + cos(wt + wt + y)}

Energy absorbed from the source

Energy released to the source

p(t) I VrmsIrms cos y -l-l VrmsIrms COS(Zwt + Y) E

.............. . Power
Average Power This term averages . ; ;
to zero over a cycle Average power Is Vrmslrm-§ cosYy | Factor

..............
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i(6),

Iv(t) Z

Pavg = Vimslrms COSY

cosy = Power Factor = PF

y is the phase deviation between voltage & current

PF tells us what fraction of the current does useful
work

Is it phase advance/delay? Does it matter?

Al
\V

Energy absorbed from the source

Energy released to the source
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Purely Resistive Load
R

Purely Reactive Load
LorC

Real Inductive Load
RL or RLC

Real Capacitive Load
RC or RLC

y=0°
cosy =1
Yy = £90°
cosy =0
—-90° <y <0°
O0<cosy<l1

0° <y <90°
O0<cosy<l1

All power consumed

No real power
consumed

Part of apparent power
consumed
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Apparent Power (symbol S unit VA)

5 = Vimslrms Active Power (symbol P unit W)
« As the name suggests, this is_the amount of P=V., 1. .cosy ="V, PF=SxPF
power that appears to be flowing from source to o
load « This is the real power transferred to the
load

« This is not the case as over a cycle, some (or
all) of this power gets returned back to source

» As the power still flows (even if it is simply
thrown back-forth between source and load),

losses still oceur Reactive Power (symbol Q unit VAr)
« A good circuit should have PF very close to P = Vimslyms SNy = Vopslyms siny = S siny
unity * This is the purely unused power
« However, AC equipment are rated for Apparent exchanged between the source and load

Power as it handles both used and unused
power
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S
. Apparent
I
mag nary Power (VA)
Q
Reactive
Power
(VAr)

Active
Power (W)
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Energy absorbed from the source

7
/ Energy released to the source
74
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R =100

12¢; AAAAAA * We have seen that inductor and capacitor individually
contribute to delaying and advancing (respectively) the current
waveform wi/r/t the voltage
~L)| 20V _ — -  When the inductance and capacitance value are equal (and
N C =50uF === L .
w opposite, inherently) they nullify each other — Resonance
L =20mH - Z; = jwL increases with increasing frequency
MYYY'M

1 - .
e Z.= TaC decreases with increasing frequency

*  We did this example earlier with frequency (50 Hz), we saw that the overall circuit was capacitive (i.e.,
capacitance was overpowering inductance and resultant current was 80° leading)

« What happens if we increase the frequency?
« There will come a frequency when inductance just matches capacitance — this is resonance
« When this happens, you will be left with a purely resistive circuit, i.e., overall impedance drops!

« As you increase the frequency (from 50 Hz), you would see current rising gradually, then sharply at
resonance, then again start falling
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I R =10Q Lets find out the current at resonant frequency and plot the
q;"__NWW\ phasor diagram
Z; = jwpesl = j X 1000 X 20 X 1073 = j200Q
+\| 20V 1 —j
= T ® H e =S T 1000 x50 x 106 J20%
L =20mH The three elements are clearly in series
YYYYYN
Z=7p+2Z, +Z,=10+j(20—20) = 10Q
ZL == ZC
X Applying Ohm’s Law
joL = ]w_C I V 2020° 2,0°A
Z 1020°
1
w = . . g .
VLC 2 A is significantly higher than 343 mA that we calculated
1 1 at 50 Hz frequency

w

V20 x1073x50x 107 V10~¢  Tpjs js because the at resonance, inductive and capacitive

rad i -
Wy = 1000 — Impedances nullify each other

S
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A coil is connected to a 50 V AC supply at 400 Hz. If the current supplied to the coil is 200 mA and
the coil has a resistance of 60 Q , determine the value of inductance.

Like most practical forms of inductor, the coil in this example has both resistance and reactance.
We can find the impedance of the colil from:

|Z|—V _50 2500
7 02

Since
1Z| = VR? + X?
X =./1Z|? — R?
X =+/2502 — 602 = 2430

Now since XL = 2nfL,
X 243

L =
2nf 100w

= 0.097H
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An AC load has a power factor of 0.8. Determine the active power dissipated in the load if it
consumes a current of 2 A at 110 V.

Since active power
P =PF XV X L
P=08x110 X 2
P=176 W
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A coil having an inductance of 150 mH and resistance of 250 Q is connectedto a 115V 400 Hz AC
supply. Determine:

(a) the power factor of the coil

(b) the current I, taken from the supply

(c) the power dissipated as heat in the coil.

(a) First we must find the reactance of the inductor, X;, (b)

and the impedance, Z, of the coil at 400 Hz. Vims 115
X, = 2m x 400 x 0.015 = 376 Q frms = 1Z| 452 0.2544
Thus
Z=R+jX; =2504,376 Q (c) The power dissipated as heat is the active power
The power factor is P = Vopslrms cosy = 0.254 X 115 x 0.553
cosy =% P=16.15W
Since
1Z| = R2 + X? = 2502 + 3762 = 452 Q.
Thus cosy = R ~20_9.553

|Zz| 452
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 Fundamentals of Alternating Current — or AC
« DC v AC circuit study — waveforms a function of time!
« Sinusoidal waveform — voltage & current
« Complex Numbers
« AC circuits
« Phasor study — simple way to solve time-varying circuits
* Resistor, Inductor, Capacitor in phasor form - CIVIL
 Reactance — Purely reactive circuits (just inductor/capacitor)
 Impedance — Resistance & Reactance
« Power in AC circuits
« Active v Reactive v Apparent Power
* Power Factor
« Resonance
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