

University of Nottingham

LECTURE 3A

Circuits Revision & AC Power

Electromechanical Devices MMME2051

Module Convenor – Surojit Sen

Illustrations are All Creative Commons if mentioned otherwise on the illustration

- Revision of circuits
 - Sinusoidal waveform phase angle v time?
 - Phasors
 - Series/Parallel clarification
 - Impedance
 - General Rule to solve circuits
 - Potential Divider Rule
- Power in AC circuits
 - Active v Reactive v Apparent Power
 - Power Factor
 - Resonance

Sinusoid is a mathematical curve defined in terms of the sine trigonometric function

Sine and Cosine are both examples of sinusoid

Cosine function is simply the Sine function, but 90° advanced

We will use the Cosine function to represent variables

Sinusoid – Phase Angle

University of Nottingham

Sinusoid – Phase Angle

University of Nottingham

UK | CHINA | MALAYSIA

Sinusoid – Phase Angle

University of Nottingham

UK | CHINA | MALAYSIA

Why are we denoting points on the x-axis with angle values?

Shouldn't x-axis have values in seconds?

 $y(t) = A\cos(\omega t + \phi)$ $y(t) = A\cos\theta$ $\omega t + \phi = \theta$

So let us say we are talking about a 50 Hz signal with 0° phase offset

$$2\pi ft + 0 = \theta$$
$$t = \frac{\theta}{2\pi \times 50} = \frac{\theta}{100\pi}$$

t = 0 when $\theta = 0$ t = 20ms when $\theta = 2\pi$

Let us try another example

 $y(t) = A\cos(\omega t + \phi)$ $y(t) = A\cos\theta$ $\omega t + \phi = \theta$

So let us say we are talking about a 50 Hz signal with $\frac{\pi}{4}$ phase offset

$$2\pi ft + \frac{\pi}{4} = \theta$$
$$t = \frac{\theta - \frac{\pi}{4}}{2\pi \times 50} = \frac{\theta - \frac{\pi}{4}}{100\pi}$$
$$t = -2.5ms \text{ when } \theta = 0$$
$$t = 17.5ms \text{ when } \theta = 2\pi$$

Sinusoid – Amplitude/Frequency/Phase Offset

University of

Nottingham

Cartesian Form – Use the x & y coordinates to represent the complex number

4 + j3x + jy (general form)

Polar Form – Use the magnitude & angle to represent the complex number

 $5 \angle 37^{\circ}$ $|V| \angle \theta$ (general form)

Exponential Form – Variation of Polar Form $Re[5e^{j37^{\circ}}]$ $Re[|V|e^{j\theta}]$ (general form) **Cartesian to Polar Conversion**

$$|V| = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\frac{y}{x}$$

Polar to Cartesian Conversion

 $x = |V| cos\theta$ $y = |V| sin\theta$

Addition/Subtraction

- Convert to cartesian form
- Add/subtract the real terms
- Add/subtract the imaginary terms

Multiplication/Division

- Convert to polar form
- Multiply/divide the magnitudes
- Add/subtract the angles

Say we have a voltage variable $v = |V| cos(\omega t + \phi)$

We may represent it with a "phasor" which is nothing but a complex number that represents the initial position of the rotating vector (i.e., at t = 0), and say the "projection on positive real axis" is the value of the physical variable For example, voltage v =150 cos(50t + 25°) may be represented in the phasor form as follows:

Numeric Form – $150\angle 25^{\circ}$ Visual Form – 150 25°

For example, current $i = 10 \cos(50t - \frac{\pi}{6})$ may be represented in the phasor form as follows:

Numeric Form – $10 \angle \frac{\pi}{6}$ Visual Form –

Nottingham uk | CHINA | MALAYSIA

University of

current in phase with voltage

- Step 1 Convert voltage and current to phasor form
- Step 2 Convert R, L, C to impedance (Z_R, Z_L, Z_C)
- Step 3 Apply circuit simplification (series/parallel) depending on what is required to be solved
- Step 3A You may need to use the "loop current" & "branch current" method depending on the problem – however, most likely you can do without if you smartly apply the series/parallel rules of circuit simplification
- Step 4 Apply KVL to the required loop(s)
- Step 5 Apply Ohm's Law
- Step 6 Solve the linear system of equations you can solve for n unknowns with n equations

Series

When two (or more) elements are connected together head-to-toe

Z_i Z =

Parallel

When two (or more) elements are connected head-to-head and toeto-toe

Series-Parallel

Combination of the both

Break the circuit up into series and parallel and solve individually

 $\frac{1}{Z} = \sum \frac{1}{Z_i}$

Potential (& Current) Divider Rule

University of Nottingham

UK | CHINA | MALAYSIA

Admittance (symbol Y unit mho or \mho) is the reciprocal of Impedance

Example of Real Circuit

ł

$$Z_{R} = 10\Omega$$

$$Z_{L} = j\omega L = j2\pi f L = j2 \times 3.14 \times 50 \times 20 \times 10^{-3} = j6.28\Omega$$

$$Z_{C} = \frac{1}{j\omega C} = \frac{1}{j2\pi f C} = \frac{-j}{2 \times 3.14 \times 50 \times 50 \times 10^{-6}} = -j63.66\Omega$$

7

The three elements are clearly in series

$$Z = Z_R + Z_L + Z_C = 10 + j(6.28 - 63.69) = 10 - j57.38$$

Applying **Ohm's Law**, we need to divide V by Z, remember, for division, we need complex numbers in **polar form**

Imaginary

University of

Nottingham UK | CHINA | MALAYSIA

$$|Z| = \sqrt{10^2 + 57.41^2} = \sqrt{3395.91} = 58.24$$

$$\angle Z = \tan^{-1} \frac{-57.41}{10} = -80.11^{\circ}$$

Applying **Ohm's Law**

$$I = \frac{V}{Z} = \frac{20\angle 0^{\circ}}{58.24\angle - 80.11^{\circ}} = 0.343\angle 80.11^{\circ}$$

When no info on phase offset for voltage provided, no harm in setting it to 0°, makes calculations easier!

- Revision of circuits
 - Sinusoidal waveform phase angle v time?
 - Phasors
 - Series/Parallel clarification
 - Impedance
 - General Rule to solve circuits
 - Potential Divider Rule
- Power in AC circuits
 - Active v Reactive v Apparent Power
 - Power Factor
 - Resonance

$$\underline{x} = \sqrt{\frac{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}{n}} = \sqrt{\frac{\sum x_i^2}{n}}$$

- When dealing with AC applications, the amplitude of voltage or current is seldom used (we will see shortly why – power)
- Hence, AC ammeters/voltmeters are invariably calibrated for RMS value not peak/amplitude
- For all **sinusoidal waves**, the RMS value is $\frac{1}{\sqrt{2}} = 0.707$ times the amplitude
- It is much more convenient to make the length of phasors represent RMS instead of amplitude
- Going forward, we will deal with **only RMS values** when studying AC

Root Mean Square (RMS)

Universitu of

Nottinaham

RMS value of
$$V = V_{rms} = \frac{|V|}{\sqrt{2}} = 0.707V$$

Power in Resistive Circuit

Instantaneous power

 $p(t) = v(t) \times i(t)$ $p(t) = V \cos \omega t \times I \cos \omega t$ $p(t) = \frac{VI}{2} (1 + \cos 2\omega t) = \frac{I^2 R}{2} (1 + \cos 2\omega t) = \frac{V^2}{2R} (1 + \cos 2\omega t)$

Average power – integrate over full cycle

$$P_{avg} = \int \frac{VI}{2} (1 + \cos 2\omega t)$$

$$P_{avg} = \frac{VI}{2} + 0$$
$$P_{avg} = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} = V_{rms} I_{rms}$$

Proof (don't learn)

University of

$$\begin{split} P_{avg} &= \frac{1}{T} \int_{0}^{T} p(t) \, dt \\ &= \frac{1}{T} \int_{0}^{T} v(t) i(t) \, dt \\ &= \frac{1}{T} \int_{0}^{T} V \cos(\omega t) I \cos(\omega t) \, dt \\ &= \frac{1}{T} \int_{0}^{T} \frac{VI}{2} \{1 + \cos(2\omega t)\} \, dt \\ &= \frac{1}{T} \int_{0}^{T} \frac{VI}{2} dt + \frac{1}{T} \int_{0}^{T} \frac{V_m I_m}{2} \{\cos(2\omega t)\} \, dt \\ &= \frac{VI}{2} - \frac{1}{\omega T} \int_{0}^{2\pi} \frac{V_m I_m}{2} \{\cos(2\omega t)\} \, d\omega t \\ &= \frac{VI}{2} = V_{rms} I_{rms} \end{split}$$

$$P_{avg} = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} = V_{rms} I_{rms}$$

Remember that power in DC circuits $P = V_{dc} \times I_{dc}$

Equivalently, the AC counterparts for V_{dc} is V_{rms} and I_{dc} is I_{rms}

That is why we always use the RMS value of voltage and current

Power in Inductive Circuit

Instantaneous power

$$p(t) = v(t) \times i(t)$$

$$p(t) = V \cos \omega t \times I \sin \omega t$$

$$p(t) = \frac{VI}{2} \sin 2\omega t = \frac{\omega LI^2}{2} \sin 2\omega t = \frac{V^2}{2\omega L} \sin 2\omega t$$

Energy absorbed from the source

Energy released to the source

Average power is ZERO!

Power in Capacitive Circuit

Average power is ZERO!

Power in Real Circuit (Resistive + Reactive)

Average power is $V_{rms}I_{rms}$ cos y

Power

Factor

(t)

 $P_{avg} = V_{rms} I_{rms} \cos \gamma$

 $cos \gamma = Power Factor = PF$

 γ is the **phase deviation** between voltage & current

PF tells us what fraction of the current does useful work

Is it phase advance/delay? Does it matter?

Energy released to the source

Purely Resistive Load	$\gamma = 0^{\circ}$ $\cos \gamma = 1$	All power consumed
Purely Reactive Load <i>L</i> or <i>C</i>	$\gamma = \pm 90^{\circ}$ $\cos \gamma = 0$	No real power consumed
Real Inductive Load <i>RL</i> or <i>RLC</i>	$-90^{\circ} < \gamma < 0^{\circ}$ $0 < \cos \gamma < 1$	Part of apparent power consumed
Real Capacitive Load RC or RLC	$0^{\circ} < \gamma < 90^{\circ}$ $0 < \cos \gamma < 1$	

Apparent Power (symbol S unit VA)

University of Nottingham

 $S = V_{rms}I_{rms}$

- As the name suggests, this is the amount of power that appears to be flowing from source to load
- This is not the case as over a cycle, some (or all) of this power gets returned back to source
- As the power still flows (even if it is simply thrown back-forth between source and load), losses still occur
- A good circuit should have PF very close to unity
- However, AC equipment are rated for Apparent Power as it handles both used and unused power

Active Power (symbol P unit W)

 $P = V_{rms}I_{rms}\cos\gamma = V_{rms}I_{rms}PF = S \times PF$

This is the real power transferred to the load

Reactive Power (symbol Q unit VAr)

 $P = V_{rms}I_{rms}\sin\gamma = V_{rms}I_{rms}\sin\gamma = S\sin\gamma$

 This is the purely unused power exchanged between the source and load

Active v Reactive v Apparent Power

University of

Energy absorbed from the source

Energy released to the source

- We have seen that inductor and capacitor **individually contribute** to delaying and advancing (respectively) the current waveform w/r/t the voltage
- When the inductance and capacitance value are equal (and opposite, inherently) they **nullify** each other **Resonance**
- $Z_L = j\omega L$ increases with increasing frequency
- $Z_C = \frac{1}{j\omega C}$ decreases with increasing frequency
- We did this example earlier with frequency (50 Hz), we saw that the **overall circuit was capacitive** (i.e., capacitance was overpowering inductance and resultant current was 80° leading)
- What happens if we increase the frequency?
- There will come a frequency when **inductance just matches capacitance** this is **resonance**
- When this happens, you will be left with a **purely resistive circuit**, i.e., **overall impedance drops**!
- As you increase the frequency (from 50 Hz), you would see current rising gradually, then sharply at resonance, then again start falling

Lets find out the current at resonant frequency and plot the phasor diagram

$$\mathbf{Z}_{L} = j\omega_{res}L = j \times 1000 \times 20 \times 10^{-3} = \mathbf{j}\mathbf{20}\mathbf{\Omega}$$

$$\mathbf{Z}_{\boldsymbol{C}} = \frac{1}{j\omega_{res}C} = \frac{-j}{1000 \times 50 \times 10^{-6}} = -j20\Omega$$

The three elements are clearly in series

$$Z = Z_R + Z_L + Z_C = 10 + j(20 - 20) = 10\Omega$$

Applying Ohm's Law

$$I = \frac{V}{Z} = \frac{20 \angle 0^{\circ}}{10 \angle 0^{\circ}} = 2 \angle 0^{\circ} A$$

2 A is significantly higher than 343 mA that we calculated at 50 Hz frequency

This is because the at resonance, inductive and capacitive impedances nullify each other

A coil is connected to a 50 V AC supply at 400 Hz. If the current supplied to the coil is 200 mA and the coil has a resistance of 60 Ω , determine the value of inductance.

Like most practical forms of inductor, the coil in this example has both resistance *and* reactance. We can find the impedance of the coil from:

$$|Z| = \frac{V}{I} = \frac{50}{0.2} = 250\Omega$$

Since

$$|Z| = \sqrt{R^2 + X^2}$$

 $X = \sqrt{|Z|^2 - R^2}$
 $X = \sqrt{250^2 - 60^2} = 243\Omega$

Now since $XL = 2\pi f L$,

$$L = \frac{X}{2\pi f} = \frac{243}{100\pi} = 0.097H$$

An AC load has a power factor of 0.8. Determine the active power dissipated in the load if it consumes a current of 2 A at 110 V.

Since active power

 $P = PF \times V_{rms} \times I_{rms}$ $P = 0.8 \times 110 \times 2$ P = 176 W

A coil having an inductance of 150 mH and resistance of 250 Ω is connected to a 115 V 400 Hz AC supply. Determine:

(a) the power factor of the coil

(b) the current I_{rms} taken from the supply

(c) the power dissipated as heat in the coil.

(a) First we must find the reactance of the inductor, X_L , (b) and the impedance, Z, of the coil at 400 Hz.

 $X_L = 2\pi \times 400 \times 0.015 = 376 \,\Omega$

Thus

$$Z = R + jX_L = 250 + j376 \,\Omega$$

The power factor is

$$\cos \gamma = \frac{R}{|Z|}$$

Since

$$|Z| = \sqrt{R^2 + X_L^2} = \sqrt{250^2 + 376^2} = 452 \ \Omega$$

Thus $cos\gamma = \frac{R}{|Z|} = \frac{250}{452} = 0.553$

$$I_{rms} = \frac{V_{rms}}{|Z|} = \frac{115}{452} = \mathbf{0.254} A$$

(c) The power dissipated as heat is the active power $P = V_{rms}I_{rms}\cos\gamma = 0.254 \times 115 \times 0.553$ P = 16.15 W

- Revision of circuits
 - Sinusoidal waveform phase angle v time?
 - Phasors
 - Series/Parallel clarification
 - Impedance
 - General Rule to solve circuits
 - Potential Divider Rule
- Power in AC circuits
 - Active v Reactive v Apparent Power
 - Power Factor
 - Resonance