

University of Nottingham

LECTURE 9

DC Motors & Boolean Algebra

Electromechanical Devices MMME2051

Module Convenor – Surojit Sen

Illustrations are All Creative Commons if mentioned otherwise on the illustration

- DC Motor
 - Revision of all motors studied so far Induction, Stepper
 - Operation of a Simple DC Motor
 - Why use a DC Motor?
- Boolean Algebra
 - Revision of Digital Electronics
 - Addition (OR), multiplication (AND), complement (NOT)
 - Laws

https://axljoann.blogspot.com/2021/05/3-phase-induction-motor-hitachi-three.html

https://medium.com/@abhisheksingh73017/how-an-induction-motor-starts-real-answer-from-an-engineer-65f2fd7fa5b1

The speed of rotation is called "synchronous speed" which is nothing but the 3-phase AC frequency!

$$n_s(Hz)=f$$
 or $n_s(RPM)=60 imes f$

Induction Motor

Left-Hand Rule (Motors)

A current-carrying conductor in a magnetic field experiences a force/thrust

Induction Motor

Right-Hand Rule (Generators)

A conductor moving in a magnetic field generates a voltage across itself (current produced if circuit was to be completed)

Induction Motor Nottingham

Universitu of

CHINA | MALAYSIA

- Rotating Magnetic Field produced by the stator is continually cutting a conductor
 - **Synchronous** Speed = Speed of the **rotating** magnetic field, i.e., stator field, i.e., input supply
- An **EMF gets generated** (RH Rule). In a squirrel cage rotor, everything is shorted! Hence, current flows
- Now the conductor is a **current-carrying** conductor. Current-carrying conductor experiences a **force** in the magnetic field (LH Rule)
- **Rotor needs to slip** (allowing the cutting) to produce any torque
- Higher slip = higher torque

https://en.engineering-solutions.ru/motorcontrol/induction3ph/

Induction Motor

$$T = \frac{3p}{2\pi f} \times \frac{V^2 as}{X_{\rm R}(a^2 + s^2)}$$

- T Torque in star-connected motor
- p Pole pairs per phase
- *f* Supply frequency
- V Supply phase voltage
- $a = \frac{R_R}{X_R}$ Resistance-to-reactance ratio of rotor
- $s = \frac{n_s n}{n_s}$ Per-Unit slip (n_s Sync Speed)
- *n* Actual speed of rotor (same unit as sync speed)
- *X*_R Reactance of Rotor (as seen from stator referred impedance remember Transformer?)

- No-load speed = synchronous speed
- Torque ∞ slip (approx.) for small torques
- Torque-speed characteristic has "hump" at $s = \frac{R_R}{X_R} = a$
- Under running conditions slip is small e.g. 5%
- By setting $\frac{dT}{ds} = 0$, can show that maximum ("pull-out") torque is

$$T_{max} = \frac{3p}{4\pi f} \frac{V^2}{X_R}$$

Motor stalls if load torque T reaches T_{max}

- Rotor is (usually) permanently magnetised
- Attracted to a different pair of poles at each step
- Moves from pole to pole as each pair of poles is energised
- So it moves in a series of steps

You can imagine, a motor design on left would make the motor spin in a **jerky** fashion. In real world, the motor looks like below. Each "**tooth**" is a magnet pole.

Stepper Motor

H-Bridge

An H-Bridge is a circuit that allows polarity inversion across a load – basically allows current to flow in both direction by the application of switches (transistors) or diodes

Universally used circuit for **Rectification** and **Motor Control**

- Sequential logic (interprets "step" signals)
- **Combinational logic** (interprets "direction")
- **Transistors** (these are the switches which connect and disconnect the windings)

Stepper Motor

"Simple" DC Motor are one of the oldest motor inventions that are still being used to this day – they are very simple from an engineering point of view

They are largely superseded now by "electronically commutated" DC Motors (hence the usage of "Simple" in this design)

Simple DC Motor

University of

"Simple" DC Motor

The stator is either **permanent magnet** or **wire-wound with DC voltage applied**

Effect is the same – constant magnetic field

Remember Induction motor stator? It is very similar, but much simpler:

- No AC
- Only single phase

"Simple" DC Motor

The rotor is simply a **coil** with current flowing through it via **another** DC voltage supply

Interesting bit here is the commutator/brush pair – this allows to flip the voltage polarity every half revolution

Hence, the current flow direction also flips

Now let us see how the motor operates!

Hint: Fleming's LH and RH Rules.

Simple DC Motor

https://www.youtube.com/watch?v=LAtPHANEfQo

University of Nottingham UK LCHINA LMALAYSIA Simple DC Motor

"Simple" DC Motor

Fleming's Left Hand Rule says a currentcarrying conductor in a magnetic field experiences force/thrust

Lorentz Law says:

 $F = B I_a l$

Torque is a function of the force and radius (which is fixed):

$\tau = r \times F$

Hence, Torque is linearly proportional to the Armature Current:

 $\tau = KI_a$

Simple DC Motor

"Simple" DC Motor

Fleming's Right Hand Rule says a moving conductor in a magnetic field generates a voltage across it

Lorentz Law says:

$$E_b = B \times vl$$

Angular velocity is linearly related to speed:

$$\omega = \frac{v}{r}$$

 Hence, Back EMF is linearly proportional to the Angular Speed:

$$E_b = K\omega$$

"Simple" DC Motor

So the two equations to pay heed to are:

 $\tau = KI_a$

 $E_b = K\omega$

You can find out mathematically (using the original equations in previous two slides) that the value of K is same in both equations!

Equivalent electrical circuit

can be used to visualise how the motor works

$$V_{in} = E_b + I_a R_a$$
$$V_{in} = K\omega + \frac{\tau}{K} R_a$$

We can also plot the Torque-Speed curve of the "Simple" DC motor using this equation

Simple DC Motor

University of

At zero speed (stall):

$$V_{in} = K(0) + \frac{\tau}{K} R_a$$
$$\tau = \frac{K}{R_a} V_{in}$$

At zero torque (no load):

$$V_{in} = K\omega + \frac{(0)}{K}R_a$$

 $\omega = \frac{V_{in}}{K}$

"Simple" DC Motor

Simple DC Motor

We can also plot the Torque-Speed curve of the "Simple" DC motor using this equation

University of

At zero speed (stall):

$$V_{in} = K(0) + \frac{\tau}{K} R_a$$
$$\tau = \frac{K}{R_a} V_{in}$$

At zero torque (no load):

$$V_{in} = K\omega + \frac{(0)}{K}R_a$$
$$\omega = \frac{V_{in}}{K}$$

"Simple" DC Motor

Worked Example 1

A motor has a constant of 0.025 $\frac{Vs}{rad}$ and an armature resistance of 0.5Ω . Find the torque which is produced when supplying the motor from 16 V and running at a speed of 5000 RPM.

 $V_{in} = E_h + I_a R_a = K\omega + I_a R_a$ $I_a = \frac{V_{in} - K\omega}{R_a}$

Here,

 $V_{in} = 16 V$ K = 0.025

 $R_a = 0.5 \Omega$

n = 5000 RPM

$$\omega = 2\pi \times \frac{5000}{60} = 523.6 \frac{rad}{s}$$

 $I_a = \frac{V_{in} - K\omega}{R_a}$ $I_a = \frac{16 - 0.025 \times 523.6}{0.5}$ $I_a = 5.82 A$

> $\boldsymbol{\tau} = K \times I_a$ $\tau = 0.025 \times 5.82$ $\tau = 0.1455 Nm$

And,

Worked Example 2

A DC motor (the "Torpedo 850") is used for small electric drills and model boats. Its no-load speed (ignore frictional effects) is given as 9778 RPM when running from 12 V. It draws a current of 10.8 A at 12 V at a speed of 8311 RPM.

Find motor constant and armature resistance.

Find current, speed and mechanical power output at 12 *V* and torque of 0.05 *Nm*.

$$V_{in} = E_b + I_a R_a = K\omega + I_a R_a$$

Motor constant: assume that under no-load condition there really is no torque so current is zero, so:

$$V_{in} = E_b = K\omega$$

$$K = \frac{V_{in}}{\omega} = \frac{12}{2\pi \times \frac{9778}{60}}$$

$$K=0.0117\frac{Vs}{rad}$$

At 8311 RPM, current is 10.8 A

$$V_{in} = K\omega + I_a R_a$$
$$R_a = \frac{V_{in} - K\omega}{I_a}$$
$$= \frac{12 - 0.0117 \times 2\pi \times \frac{8311}{60}}{10.8}$$

$$\frac{2}{9778} \qquad \qquad R_a = \frac{1}{2}$$

$$R_a = 0.168 \,\Omega$$

Worked Example 2

 $\tau = KI_a$

 $I_a = \frac{\tau}{\kappa}$

 $I_a = \frac{0.05}{0.0117}$

 $I_a = 4.27 \text{ A}$

A DC motor (the "Torpedo 850") is used for small electric drills and model boats. Its no-load speed (ignore frictional effects) is given as 9778 RPM when running from 12 V. It draws a current of 10.8 A at 12 V at a speed of 8311 RPM.

Find motor constant and armature resistance.

Find current, speed and mechanical power output at 12 *V* and torque of 0.05 *Nm*.

At 8311 RPM, current is 10.8 A

 $V_{in} = K\omega + I_a R_a$ $\omega = \frac{V_{in} - I_a R_a}{K}$ $\omega = \frac{12 - 4.27 \times 0.168}{0.0117}$ $\omega = 964 \frac{rad}{s}$ $\omega = 9205 RPM$

Mechanical output

 $W = \tau \omega = 0.05 \times 964 = 48.2 W$

- DC Motor
 - Revision of all motors studied so far Induction, Stepper
 - Operation of a Simple DC Motor
 - Why use a DC Motor?
- Boolean Algebra
 - Revision of Digital Electronics
 - Addition (OR), multiplication (AND), complement (NOT)
 - Laws

Digital

- Information in form of **discrete** symbols, or **levels**
- Variable can be only 1 out of a finite number of options

Humans interpret physical values in discrete levels

- Alphabets
- Binary number
- Logic state
- Answer to the question "Are you enjoying this module?"

Analog

- Information in form of **continuous** and **real-valued levels**
 - Variable can be only 1 out of an infinite number of options
- The physical values exist naturally in continuous spectrum levels
- Air pressure in this room
- Volume of my voice
- Battery voltage in your laptop
- Answer to the question "How much are you enjoying this module?"

There are 26 alphabets in the English language – digital!

Numbers

Every number that we use, uses a distinct number of symbols (including the decimal point)

Let us look at a number in the "Decimal" number-format, the one that we have grown up with.

The same number in the Hexadecimal format will be

How about in Binary?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0001 0010 1101

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0001 0010 1101

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0001 0010 1101

How is this actually done in reality?

This aligns with computer/software engineering – binary system used

Logic – TRUE/FALSE

We said that **301** (weight of the FS21 in kg) is represented in binary as

0001 0010 1101

How is this actually done in reality?

Just the same way you do for decimal numbers!

Decimal	Binary	
124 +229	1 1 1 1 0111 1100 +1110 0101	We don't normal do multiplication and
353	1 0110 0001	division operations on binary numbers
124 - 47	0111 1100 +0010 1111	We shall study Binary Algebra later
77	0100 1101	

4-bit Binary Number Range

Decimal	B ₄	B ₂	B ₂	B ₁	Binary
0	0	0	0	0	0000
1	0	0	0	1	0001
2	0	0	1	0	0010
3	0	0	1	1	0011
4	0	1	0	0	0100
5	0	1	0	1	0101
6	0	1	1	0	0110
7	0	1	1	1	0111
8	1	0	0	0	1000
9	1	0	0	1	1001
10	1	0	1	0	1010
11	1	0	1	1	1011
12	1	1	0	0	1100
13	1	1	0	1	1101
14	1	1	1	0	1110
15	1	1	1	1	1111

We would call this a 4-bit binary number – it is made of 4 bits

Maximum number we can count up to for a binary number is given by $2^n - 1$

1 byte = 8 bits

Modern computers use **32-bit** or **64-bit** numbers in its operating system

Remember the numeric data types you learnt in MATLAB last year?

- Single 4 bytes
- **Double** 8 bytes
- Int8 1 byte

Logic Gates

This is an Integrated Circuit, or IC!

Logic Gates

This is an Integrated Circuit, or IC!

Don't need to study this for exam

- Step 1 Identify how many inputs there are
- Step 2 Draw a truth table with as many number of rows as possible combinations of input bits
- **Step 3 Try each input combination in the logic gate**
- **Step 4 Propagate the "logic" all the way to output**
- **Step 5 Fill the truth table row by row**

Total inputs = 2

Total combinations possible = $2^n = 4$

4 rows in truth table

Α	B	Q	Remark
0	0	0	
0	1	1	This is XOR
1	0	1	gate
1	1	0	6

Example 4

University of

Nottingham UK | CHINA | MALAYSIA

- You want to automatically ٠ shut off the reactor when the cooling fluid rises above 50°C
- It would also be bad if the • coolant froze – shut down the reactor!
- Thermometer gives a 3-٠ bit binary output in 10°C steps –
 - $2^3 = 8$ levels ٠
 - Count from 0 to 2^3 ٠ 1 = 7
 - 0°C to 80°C range of ٠ output

S=1 (as we said solving for HI) if:

• $O_1 = 0$ AND $O_2 = 0$ AND $O_3 = 0$ OR

OR

= 1: Alert = 0: Safe

- $O_1 = 1 \text{ AND } O_2 = 1 \text{ AND } O_3 = 0$ ٠
- $O_1 = 1 \text{ AND } O_2 = 1 \text{ AND } O_3 = 1$

Example 5

	а	b	С	d	е	f	g
0	1	1	1	0	1	1	1
1	0	0	1	0	0	1	0
2	1	0	1	1	1	0	1
3	1	0	1	1	0	1	1
4	0	1	1	1	0	1	0
5	1	1	0	1	0	1	1
6	1	1	0	1	1	1	1
7	1	0	1	0	0	1	0
8	1	1	1	1	1	1	1
9	1	1	1	1	0	1	1

Boolean Algebra is like regular algebra – but instead of numbers, it operates with logical variables true and false, also denoted by 1 and 0 respectively

This is used to simplify logical circuits mathematically, i.e., instead of solving a complicated digital logic circuit via propagation of signal, you can simplify it mathematically using certain laws

There are three operators:

George Boole, self-taught English mathematician wrote the book *The Laws of Thoughts* (1854) and introduced Boolean Algebra

Operation	Symbol	Logic Gate
Conjunction	∧ or .	AND
Disjunction	V or +	OR
Negation	⊐ or ' or overhead bar	NOT

Boolean Algebra

University of Nottingham

UK | CHINA | MALAYSIA

NOT
$$A \xrightarrow{} \bigcirc Q$$
 $A \xrightarrow{} \bigcirc Q$

$$\boldsymbol{Q}=\boldsymbol{A}.\,\boldsymbol{B}=\boldsymbol{A}\wedge\boldsymbol{B}$$

$$Q = A + B = A \vee B$$

$$Q = A' = \neg A = \overline{A}$$

Boolean Algebra

$$Q = A.B' + A'.B$$

 $Q = A.\overline{B} + \overline{A}.B$

$$S = O'_1 \cdot O'_2 \cdot O'_3 + O_1 \cdot O_2 \cdot O'_3 + O_1 \cdot O_2 \cdot O'_3 + O_1 \cdot O_2 \cdot O_3$$

Boolean Law	Example 1	Example 2	Example 3
Annulment	A.0=0	A + 1 = 1	
Identity	A.1=A	A + 0 = A	
Idempotent	A.A = A	A + A = A	
Complement	A.A'=0	A + A' = 1	
Commutative	A.B = B.A	A + B = B + A	
Associative	A.(B.C) = (A.B).C	A + (B + C) = (A + B) + C	
Distributive	A.(B+C) = A.B + B.C	A + (B.C) = (A + B).(A + C)	
Absorption	$A.\left(A+B\right)=A$	A + (A.B) = A	A + A'.B = A + B
Involution	(A')' = A		
De Morgan's	(A+B)' = A'.B'	(A.B)' = A' + B'	

- DC Motor
 - Revision of all motors studied so far Induction, Stepper
 - Operation of a Simple DC Motor
 - Why use a DC Motor?
- Boolean Algebra
 - Revision of Digital Electronics
 - Addition (OR), multiplication (AND), complement (NOT)
 - Laws

Attendance

