FREE VIBRATION OF
SINGLE DEGREE-OF-FREEDOM SYSTEMS

This section will analyse the response of single degree-of-
freedom systems to external excitation that is removed when
time starts (t=0)

This takes the form either of applied forces and/or moments
or of imposed displacement on part of the system.

Damping

Damping is a phenomenon of energy dissipation in a
vibrating structure

We will consider one theoretical damping model, called
viscous damping and will only consider discrete dampers



Piston allowing flow

Fluid-filled cylinder through constriction
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Diagrammatic form
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Assumption Damper force is proportional to the relative velocity
and acts in a direction to oppose the motion

Damper forceis C(X—VY)

C is the damping coefficient which has units of N/ (m/s) or Ns/m



Example 1 Mass-Spring-Damper System

STEP 1: Dynamic model STEP 2: Free Body Diagram
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(i) Remove spring & damper
(ii) Add the motion coordinate

(iii) Add the forces



STEP 3: Equation of motion ~ P
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o MmX + cX + kx = P(t)




Example 2 Rocker System (used for a previous example)
STEP 1: Dynamic model STEP 2: Free Body Diagram
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(i) Remove springs & damper

(ii) Add the motion coordinate

(iii) Add the forces K,



STEP 3 Equation of motion ]
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Example 3 Single-axle caravan

Assumptions

% tyres are very stiff compared to
suspension springs

% tyres stay in contact with the road
% caravan acts as a rigid mass
% body motion is vertical translation

STEP 1: Dynamic model

I
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Axle

An example of Displacement
excitation

Displacement I (t) is defined
exactly by the road profile
and vehicle speed



STEP 2 Free Body Diagram

J X
(i) Remove springs & dampers

(ii) Add the motion coordinates *
(iii) Add the forces

(a) Springs

Spring force = Stiffness x Change of length
What is the change of length of the spring?  m—> F—X

Is the spring in tension or compression? II——> compression



STEP 2 Free Body Diagram

J X
(i) Remove springs & dampers

(ii) Add the motion coordinates *
(iii) Add the forces

(b) Dampers

Damper force = Damping coefficient x Relative velocity
What is the relative velocity between the ends? I E— I — X

Is the damper extending or compressing? II——> compressing



STEP 3: Equation of motion

or

=
2c(r—x) 2k(r-x)

2k(r—x) +2c¢(r—%) = mx

mX + 2cx + 2kx = 2cr(t) + 2kr(t)




Summary so far

Mass-spring-damper system  mX + CX + kX = P(t)
Rocker system M2 +cl20+(K, L2 +K,13)0=L,P(t)

Single-axle caravan mX + 2cx + 2kx = 2cf(t) + 2kr(t)

All are second-order ODEs with constant coefficients

All linear, single-degree-of-freedom systems have this form, which
can be written generically as:

MZ+ Cz+ Kz= F(t) (1)
is the response coordinate

Z

M is the Mass coefficient of acceleration Z
C is the Damping coefficient of velocity 7
K

is the Stiffness coefficient of displacement Z
F(t) is the excitation function (independent of Z)

Remember that every term in the expressions for the coefficients
M, C and K must be positive and that any negative sigh means
that your equation is definitely wrong



The solution to the equation of motion depends on the nature
of the excitation function and on the amount of damping in
the system.

There are 3 types of response we will consider here

A: “FREE"” VIBRATION - I.e. no external forces

Case (i) Zero damping
Case (ii) High damping
Case (iii) Critical damping
Case (iv) Light damping

B: FORCED VIBRATION -
RESPONSE TO SINUSOIDAL EXCITATION

C: FORCED VIBRATION -
RESPONSE TO PERIODIC EXCITATION

You must be able to recognise the various cases so that you
can apply the appropriate solution procedure



A: “"FREE"” VIBRATION

“Free” vibration means that there is no external applied force
or moment acting on the structure Z(t)= Acos At = Ae“

For F(t)=0 , the general system response , At
solutio(n i)s Z(t): AAE

g At
Substituting into the equation of motion gives, Z(t)= ZAe

M a2 Aet + crae* + KAae't = 0

For a non-trivial solution, M A° + CA + K

~C +./C?-4KM
2M (2)

so that A12 =

The complete solution for position as a function of time is then
At Aot
2(t) = Ae + Ae (3)



() = Aet + Ae” ®

The integration constants, A; and A,, are found from the “initial
conditions” specified in the problem.

Usually these are given to you in numerical or plot form.

I.e. at time equals zero the mass is lifted up by 0.2 m and released
from rest.

Thereforeat =0, 2(0)=0.2, and 2(0)=0

This gives you 2 equations and 2 unknowns to solve for A; and A,.

A,*0 A0 A0 A, *0
2(0)=02=Ae " +Ae " 2(0)=0= A re ' + Aj,e°

0.2=A, +A, 0=A A+ AN,



 -C+.C?-4KM
A2 = > M (2)

It can be seen from equation (2) that the roots A; , can be either
real or complex, depending on the amount of damping present

There are FOUR CASES to consider

Case (i) Zero damping
Case (ii) High damping
Case (iil) Critical damping
Case (iv) Light damping



Case (i) Zero Damping

For zero damping, the system will oscillate with simple harmonic
motion, although the sinusoidal waveform is not obvious from
equation (3) t Aot

) = Aet - AET O

~C +./C?-4KM

What we need to do is look at A A 15 = (2)
2 M
— J—4KM i |K
For C=0, 12=T =T,
2 M M
The term ﬁ is called the undamped natural frequency
M

and is given the symbol ®,



Returning to the general case, equation (3) becomes

i(Dnt —i(Dnt

Z(t) = A e + A e
This still doesn’t look much like a sinusoidal waveform. However,
e'®t — cosw, t +isino.t and el =cosw. t — isinm,t

2(t)= A, cosm t+ Alisinmt+ A, cosm t — Ajisin ot
Therefore A; and A, are a complex conjugate pair, and

z(t) = Bcosw,t + C sino,t (4)

As before you can now solve for B and C using known conditions
for the system



Case (ii) High Damping

The damping ratio, v, is

C C C

critical damping C.,  2JKM
Damping is said to be “high” if y >1

(sometimes refered to as C? > 4KM)

In this case, the two roots, ?\,1, 5 are both REAL and NEGATIVE

The response is given by equation (3) and is the sum of two decaying
exponential functions

The constants A; and A, are found from the initial conditions as usual



Case (iii) Critical damping

Damping is said to be if y =1 (C? = 4KM)

Thus  C,, = 2./KM (5)

From equation (2) it will be seen that

. Ccrit
2 M

A = A2 = = ~n

To maintain distinct parts to the solution, the response is given by

—(Dnt —(Dnt

Z(t) = A e + A te (6)

Note the “t”in the second term



Case (iv) Light Damping
Most engineering structures have damping levels much less than critical
Damping is “light” when y <1 (C? < 4KM)

The roots of equation (2) are a complex conjugate pair

C . J4KM -¢?
= — — + | 7
Mz 2M 2M )

The damping ratio, v, is

C

C
critical damping 2VKM
Using the undamped natural frequency, ®,,, equation (7) becomes

M, = —yo, £ Lo, 1-vy (8)



Equation (3) gives

(—ymn +io, wll—yz)t (—yoon —io, wll—yz)t

z(t)=A e (©)
Using of the complex exponential identities and the fact that A,
and A, are a complex conjugate pair, equation (9) becomes

z(t)=e"" {Bl oS ®, 4/1—y* t + B, sin o, /1—y? tJ (10)

Equation (10) describes a sinusoidal waveform (indicated by the
terms in the square brackets) with an exponentially decaying term
that will cause the amplitude of the sinusoid to decrease

+ A, €

An alternative to equation (10) is

z(t)=Coe 7o cos(oon 1-y°t— \|/J (11)

[N\




Equation (3) gives

(—ymn +io, wll—yz)t (—yoon —io, wll—yz)t

z(t)=A e +A, e (©)
Using of the complex exponential identities and the fact that A,

and A, are a complex conjugate pair, equation (9) becomes

z(t)=e"" {Bl oS ®, 4/1—y* t + B, sin o, /1—y? tJ (10)

Equation (10) describes a sinusoidal waveform (indicated by the
terms in the square brackets) with an exponentially decaying term
that will cause the amplitude of the sinusoid to decrease

The frequency of vibration is €2, =®, \/1 — 7

This is known as the damped natural frequency and is less than
the undamped natural frequency, ®,,. It is sometimes given the
variable name Q.



To determine the free response of any system all you need to do is
know what damping level it contains and choose the
corresponding equation to solve.

Case (i) Zero Damping C =0
z(t) = Bcosw,t + Csino,t  (4)

Case (ii) High Damping y >1 (C? > 4KM)

Aqt Aot _ 2 _
2(t) = Ae” + Aje’ (3) where 3= CiJZCM 4KM

Case (iii) Critical damping y =1 (C? = 4KM)

(Dnt —(Dnt

2(t) = Ae + Ate (6)
Case (iv) Light Damping y <1 (C? < 4KM)
z(t)=e"™" {Bl Cos ®, A[1-y?t + B, sin o y1-7° tJ (10) C

OR where y—zm
Z(t)=Cqe Yont cos(oan 1-y°t— \|;J (11)



Worked Example
STEP 1: Dynamic model

SN
K % ’J att=0

m
lX
When at rest in equilibrium, the
mass receives an impulse of

5 Ns applied at time, t = 0

Find the response for {1 > 0

Data: k = 500 N/m
c = 20 Ns/m
m = 10 kg

STEP 2:

Free Body Diagram
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STEP 3: Equation of motion k x

‘x —2KX —cXx = m¥X -
BRE

oo MX + cX + 2kx =0 ff

K X CX
c.f. M7 + Cz + Kz=20
M \/m
C

— = 0.1 ..“light” damping

C
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From (10) X (t)=e7""|B, cos Q, t + B, sin Q, t

where €2, = O, \ 1_V2

You now have one equation (10), with two unknowns B; and B,.
You therefore need to look at initial conditions to solve for the

unknowns.
Initial conditions: The system starts at rest

at t=0 x=0 .-.B,=0
Hence X('[)z B, e "' sin Q. t
Initial velocity: You are given the impulse J = 5 Ns

The velocity immediately after the impulse, Xo , IS given by
Impulse = Change in momentum

J=m(x, -0)



Differentiate X (t)z 52 e "' sin Qnt to give

X=B, [Qn e’ 'cosQ t — yo,e " sinQ t ]

k=2 at t=0 - = B,[Q, - 0]
m m
Hence BzzL
maQ.
J vt -
and x(t) = e " 'sin Q, t
mQ.

Substituting the numerical values gives

x(t) = 0.0505 e sin9.9t [m]




Estimating Damping

7 (t)z g YOn! [Bl COS Qn t+ BZ Sin Qn t] (10)
z(t)=Coe "™ cos(Q t— vy)

where Qn — (Dn \ 1_V2

Equation (10) or (11) shows that the rate of decay of the free
vibration of a structure depends directly on the damping ratio
and this gives a method of measuring damping

In the previous worked example, suppose we didn’t know the
damping value, but had done an experiment to measure the
transient displacement caused by the impulse



Displacement

[\ \

t; t,+T

The ratio of the amplitudes is

Time

The second peak occurs
one period after the first

ﬁ — eyO)n Tn
X2



Xl

T
The ratio of the amplitudes is X_ = g '@ 'n
2
. L 27 27
Period of the damped vibration T, = — = -
O on y1- 7
X
. L = g 7(27‘) Taking logs, In(—lj = 27y
X
X, 2

In this example, X, =0.0431m and X, =0.0229m

Hence, y=0.101| and |C=20.1 Ns/m

Note that the ratio of any two successive peaks is a constant



