quantum/debounce: Added sym_pk debounce algorithm (#8587)

* quantum/debounce: Added sym_pk debounce algorithm

* Apply suggestions from code review

Co-Authored-By: Ryan <fauxpark@gmail.com>

* quantum/debounce/sym_pk: delete comments and rename functions following code review

* quantum/debounce/sym_pk: Modifications for code readability according to code review

* quantum/debounce/sym_pk: Modifications for code readability according to code review (2)

* quantum/debounce/sym_pk: code review: cleaner code

Co-Authored-By: Nick Brassel <nick@tzarc.org>

Co-authored-by: Ryan <fauxpark@gmail.com>
Co-authored-by: Nick Brassel <nick@tzarc.org>
This commit is contained in:
Purdea Andrei 2020-04-11 14:29:48 +03:00 committed by GitHub
parent 511fe643c2
commit b8c3f4c60b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 113 additions and 7 deletions

View File

@ -38,5 +38,6 @@ For use in keyboards where refreshing ```NUM_KEYS``` 8-bit counters is computati
appropriate for the ErgoDox models; the matrix is rotated 90°, and hence its "rows" are really columns, and each finger only hits a single "row" at a time in normal use. appropriate for the ErgoDox models; the matrix is rotated 90°, and hence its "rows" are really columns, and each finger only hits a single "row" at a time in normal use.
* eager_pk - debouncing per key. On any state change, response is immediate, followed by ```DEBOUNCE``` milliseconds of no further input for that key * eager_pk - debouncing per key. On any state change, response is immediate, followed by ```DEBOUNCE``` milliseconds of no further input for that key
* sym_g - debouncing per keyboard. On any state change, a global timer is set. When ```DEBOUNCE``` milliseconds of no changes has occured, all input changes are pushed. * sym_g - debouncing per keyboard. On any state change, a global timer is set. When ```DEBOUNCE``` milliseconds of no changes has occured, all input changes are pushed.
* sym_pk - debouncing per key. On any state change, a per-key timer is set. When ```DEBOUNCE``` milliseconds of no changes have occured on that key, the key status change is pushed.

View File

@ -27,13 +27,7 @@ No further inputs are accepted until DEBOUNCE milliseconds have occurred.
# define DEBOUNCE 5 # define DEBOUNCE 5
#endif #endif
#if (MATRIX_COLS <= 8) #define ROW_SHIFTER ((matrix_row_t)1)
# define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
# define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
# define ROW_SHIFTER ((uint32_t)1)
#endif
#define debounce_counter_t uint8_t #define debounce_counter_t uint8_t

111
quantum/debounce/sym_pk.c Normal file
View File

@ -0,0 +1,111 @@
/*
Copyright 2017 Alex Ong<the.onga@gmail.com>
Copyright 2020 Andrei Purdea<andrei@purdea.ro>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Basic symmetric per-key algorithm. Uses an 8-bit counter per key.
When no state changes have occured for DEBOUNCE milliseconds, we push the state.
*/
#include "matrix.h"
#include "timer.h"
#include "quantum.h"
#include <stdlib.h>
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
#define ROW_SHIFTER ((matrix_row_t)1)
#define debounce_counter_t uint8_t
static debounce_counter_t *debounce_counters;
static bool counters_need_update;
#define DEBOUNCE_ELAPSED 251
#define MAX_DEBOUNCE (DEBOUNCE_ELAPSED - 1)
static uint8_t wrapping_timer_read(void) {
static uint16_t time = 0;
static uint8_t last_result = 0;
uint16_t new_time = timer_read();
uint16_t diff = new_time - time;
time = new_time;
last_result = (last_result + diff) % (MAX_DEBOUNCE + 1);
return last_result;
}
void update_debounce_counters_and_transfer_if_expired(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, uint8_t current_time);
void start_debounce_counters(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, uint8_t current_time);
// we use num_rows rather than MATRIX_ROWS to support split keyboards
void debounce_init(uint8_t num_rows) {
debounce_counters = (debounce_counter_t *)malloc(num_rows * MATRIX_COLS * sizeof(debounce_counter_t));
int i = 0;
for (uint8_t r = 0; r < num_rows; r++) {
for (uint8_t c = 0; c < MATRIX_COLS; c++) {
debounce_counters[i++] = DEBOUNCE_ELAPSED;
}
}
}
void debounce(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, bool changed) {
uint8_t current_time = wrapping_timer_read();
if (counters_need_update) {
update_debounce_counters_and_transfer_if_expired(raw, cooked, num_rows, current_time);
}
if (changed) {
start_debounce_counters(raw, cooked, num_rows, current_time);
}
}
void update_debounce_counters_and_transfer_if_expired(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, uint8_t current_time) {
counters_need_update = false;
debounce_counter_t *debounce_pointer = debounce_counters;
for (uint8_t row = 0; row < num_rows; row++) {
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
if (*debounce_pointer != DEBOUNCE_ELAPSED) {
if (TIMER_DIFF(current_time, *debounce_pointer, MAX_DEBOUNCE) >= DEBOUNCE) {
*debounce_pointer = DEBOUNCE_ELAPSED;
cooked[row] = (cooked[row] & ~(ROW_SHIFTER << col)) | (raw[row] & (ROW_SHIFTER << col));
} else {
counters_need_update = true;
}
}
debounce_pointer++;
}
}
}
void start_debounce_counters(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, uint8_t current_time) {
debounce_counter_t *debounce_pointer = debounce_counters;
for (uint8_t row = 0; row < num_rows; row++) {
matrix_row_t delta = raw[row] ^ cooked[row];
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
if (delta & (ROW_SHIFTER << col)) {
if (*debounce_pointer == DEBOUNCE_ELAPSED) {
*debounce_pointer = current_time;
counters_need_update = true;
}
} else {
*debounce_pointer = DEBOUNCE_ELAPSED;
}
debounce_pointer++;
}
}
}
bool debounce_active(void) { return true; }