/* * WARNING: be careful changing this code, it is very timing dependent * * 2018-10-28 checked * avr-gcc 4.9.2 * avr-gcc 5.4.0 * avr-gcc 7.3.0 */ #ifndef F_CPU # define F_CPU 16000000 #endif #include <avr/io.h> #include <avr/interrupt.h> #include <util/delay.h> #include <stddef.h> #include <stdbool.h> #include "serial.h" #ifdef SOFT_SERIAL_PIN # ifdef __AVR_ATmega32U4__ // if using ATmega32U4 I2C, can not use PD0 and PD1 in soft serial. # ifdef USE_AVR_I2C # if SOFT_SERIAL_PIN == D0 || SOFT_SERIAL_PIN == D1 # error Using ATmega32U4 I2C, so can not use PD0, PD1 # endif # endif # define setPinInputHigh(pin) (DDRx_ADDRESS(pin) &= ~_BV((pin)&0xF), PORTx_ADDRESS(pin) |= _BV((pin)&0xF)) # define setPinOutput(pin) (DDRx_ADDRESS(pin) |= _BV((pin)&0xF)) # define writePinHigh(pin) (PORTx_ADDRESS(pin) |= _BV((pin)&0xF)) # define writePinLow(pin) (PORTx_ADDRESS(pin) &= ~_BV((pin)&0xF)) # define readPin(pin) ((bool)(PINx_ADDRESS(pin) & _BV((pin)&0xF))) # if SOFT_SERIAL_PIN >= D0 && SOFT_SERIAL_PIN <= D3 # if SOFT_SERIAL_PIN == D0 # define EIMSK_BIT _BV(INT0) # define EICRx_BIT (~(_BV(ISC00) | _BV(ISC01))) # define SERIAL_PIN_INTERRUPT INT0_vect # elif SOFT_SERIAL_PIN == D1 # define EIMSK_BIT _BV(INT1) # define EICRx_BIT (~(_BV(ISC10) | _BV(ISC11))) # define SERIAL_PIN_INTERRUPT INT1_vect # elif SOFT_SERIAL_PIN == D2 # define EIMSK_BIT _BV(INT2) # define EICRx_BIT (~(_BV(ISC20) | _BV(ISC21))) # define SERIAL_PIN_INTERRUPT INT2_vect # elif SOFT_SERIAL_PIN == D3 # define EIMSK_BIT _BV(INT3) # define EICRx_BIT (~(_BV(ISC30) | _BV(ISC31))) # define SERIAL_PIN_INTERRUPT INT3_vect # endif # elif SOFT_SERIAL_PIN == E6 # define EIMSK_BIT _BV(INT6) # define EICRx_BIT (~(_BV(ISC60) | _BV(ISC61))) # define SERIAL_PIN_INTERRUPT INT6_vect # else # error invalid SOFT_SERIAL_PIN value # endif # else # error serial.c now support ATmega32U4 only # endif # define ALWAYS_INLINE __attribute__((always_inline)) # define NO_INLINE __attribute__((noinline)) # define _delay_sub_us(x) __builtin_avr_delay_cycles(x) // parity check # define ODD_PARITY 1 # define EVEN_PARITY 0 # define PARITY EVEN_PARITY # ifdef SERIAL_DELAY // custom setup in config.h // #define TID_SEND_ADJUST 2 // #define SERIAL_DELAY 6 // micro sec // #define READ_WRITE_START_ADJUST 30 // cycles // #define READ_WRITE_WIDTH_ADJUST 8 // cycles # else // ============ Standard setups ============ # ifndef SELECT_SOFT_SERIAL_SPEED # define SELECT_SOFT_SERIAL_SPEED 1 // 0: about 189kbps (Experimental only) // 1: about 137kbps (default) // 2: about 75kbps // 3: about 39kbps // 4: about 26kbps // 5: about 20kbps # endif # if __GNUC__ < 6 # define TID_SEND_ADJUST 14 # else # define TID_SEND_ADJUST 2 # endif # if SELECT_SOFT_SERIAL_SPEED == 0 // Very High speed # define SERIAL_DELAY 4 // micro sec # if __GNUC__ < 6 # define READ_WRITE_START_ADJUST 33 // cycles # define READ_WRITE_WIDTH_ADJUST 3 // cycles # else # define READ_WRITE_START_ADJUST 34 // cycles # define READ_WRITE_WIDTH_ADJUST 7 // cycles # endif # elif SELECT_SOFT_SERIAL_SPEED == 1 // High speed # define SERIAL_DELAY 6 // micro sec # if __GNUC__ < 6 # define READ_WRITE_START_ADJUST 30 // cycles # define READ_WRITE_WIDTH_ADJUST 3 // cycles # else # define READ_WRITE_START_ADJUST 33 // cycles # define READ_WRITE_WIDTH_ADJUST 7 // cycles # endif # elif SELECT_SOFT_SERIAL_SPEED == 2 // Middle speed # define SERIAL_DELAY 12 // micro sec # define READ_WRITE_START_ADJUST 30 // cycles # if __GNUC__ < 6 # define READ_WRITE_WIDTH_ADJUST 3 // cycles # else # define READ_WRITE_WIDTH_ADJUST 7 // cycles # endif # elif SELECT_SOFT_SERIAL_SPEED == 3 // Low speed # define SERIAL_DELAY 24 // micro sec # define READ_WRITE_START_ADJUST 30 // cycles # if __GNUC__ < 6 # define READ_WRITE_WIDTH_ADJUST 3 // cycles # else # define READ_WRITE_WIDTH_ADJUST 7 // cycles # endif # elif SELECT_SOFT_SERIAL_SPEED == 4 // Very Low speed # define SERIAL_DELAY 36 // micro sec # define READ_WRITE_START_ADJUST 30 // cycles # if __GNUC__ < 6 # define READ_WRITE_WIDTH_ADJUST 3 // cycles # else # define READ_WRITE_WIDTH_ADJUST 7 // cycles # endif # elif SELECT_SOFT_SERIAL_SPEED == 5 // Ultra Low speed # define SERIAL_DELAY 48 // micro sec # define READ_WRITE_START_ADJUST 30 // cycles # if __GNUC__ < 6 # define READ_WRITE_WIDTH_ADJUST 3 // cycles # else # define READ_WRITE_WIDTH_ADJUST 7 // cycles # endif # else # error invalid SELECT_SOFT_SERIAL_SPEED value # endif /* SELECT_SOFT_SERIAL_SPEED */ # endif /* SERIAL_DELAY */ # define SERIAL_DELAY_HALF1 (SERIAL_DELAY / 2) # define SERIAL_DELAY_HALF2 (SERIAL_DELAY - SERIAL_DELAY / 2) # define SLAVE_INT_WIDTH_US 1 # ifndef SERIAL_USE_MULTI_TRANSACTION # define SLAVE_INT_RESPONSE_TIME SERIAL_DELAY # else # define SLAVE_INT_ACK_WIDTH_UNIT 2 # define SLAVE_INT_ACK_WIDTH 4 # endif static SSTD_t *Transaction_table = NULL; static uint8_t Transaction_table_size = 0; inline static void serial_delay(void) ALWAYS_INLINE; inline static void serial_delay(void) { _delay_us(SERIAL_DELAY); } inline static void serial_delay_half1(void) ALWAYS_INLINE; inline static void serial_delay_half1(void) { _delay_us(SERIAL_DELAY_HALF1); } inline static void serial_delay_half2(void) ALWAYS_INLINE; inline static void serial_delay_half2(void) { _delay_us(SERIAL_DELAY_HALF2); } inline static void serial_output(void) ALWAYS_INLINE; inline static void serial_output(void) { setPinOutput(SOFT_SERIAL_PIN); } // make the serial pin an input with pull-up resistor inline static void serial_input_with_pullup(void) ALWAYS_INLINE; inline static void serial_input_with_pullup(void) { setPinInputHigh(SOFT_SERIAL_PIN); } inline static uint8_t serial_read_pin(void) ALWAYS_INLINE; inline static uint8_t serial_read_pin(void) { return !!readPin(SOFT_SERIAL_PIN); } inline static void serial_low(void) ALWAYS_INLINE; inline static void serial_low(void) { writePinLow(SOFT_SERIAL_PIN); } inline static void serial_high(void) ALWAYS_INLINE; inline static void serial_high(void) { writePinHigh(SOFT_SERIAL_PIN); } void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size) { Transaction_table = sstd_table; Transaction_table_size = (uint8_t)sstd_table_size; serial_output(); serial_high(); } void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size) { Transaction_table = sstd_table; Transaction_table_size = (uint8_t)sstd_table_size; serial_input_with_pullup(); // Enable INT0-INT3,INT6 EIMSK |= EIMSK_BIT; # if SOFT_SERIAL_PIN == E6 // Trigger on falling edge of INT6 EICRB &= EICRx_BIT; # else // Trigger on falling edge of INT0-INT3 EICRA &= EICRx_BIT; # endif } // Used by the sender to synchronize timing with the reciver. static void sync_recv(void) NO_INLINE; static void sync_recv(void) { for (uint8_t i = 0; i < SERIAL_DELAY * 5 && serial_read_pin(); i++) { } // This shouldn't hang if the target disconnects because the // serial line will float to high if the target does disconnect. while (!serial_read_pin()) ; } // Used by the reciver to send a synchronization signal to the sender. static void sync_send(void) NO_INLINE; static void sync_send(void) { serial_low(); serial_delay(); serial_high(); } // Reads a byte from the serial line static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) NO_INLINE; static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) { uint8_t byte, i, p, pb; _delay_sub_us(READ_WRITE_START_ADJUST); for (i = 0, byte = 0, p = PARITY; i < bit; i++) { serial_delay_half1(); // read the middle of pulses if (serial_read_pin()) { byte = (byte << 1) | 1; p ^= 1; } else { byte = (byte << 1) | 0; p ^= 0; } _delay_sub_us(READ_WRITE_WIDTH_ADJUST); serial_delay_half2(); } /* recive parity bit */ serial_delay_half1(); // read the middle of pulses pb = serial_read_pin(); _delay_sub_us(READ_WRITE_WIDTH_ADJUST); serial_delay_half2(); *pterrcount += (p != pb) ? 1 : 0; return byte; } // Sends a byte with MSB ordering void serial_write_chunk(uint8_t data, uint8_t bit) NO_INLINE; void serial_write_chunk(uint8_t data, uint8_t bit) { uint8_t b, p; for (p = PARITY, b = 1 << (bit - 1); b; b >>= 1) { if (data & b) { serial_high(); p ^= 1; } else { serial_low(); p ^= 0; } serial_delay(); } /* send parity bit */ if (p & 1) { serial_high(); } else { serial_low(); } serial_delay(); serial_low(); // sync_send() / senc_recv() need raise edge } static void serial_send_packet(uint8_t *buffer, uint8_t size) NO_INLINE; static void serial_send_packet(uint8_t *buffer, uint8_t size) { for (uint8_t i = 0; i < size; ++i) { uint8_t data; data = buffer[i]; sync_send(); serial_write_chunk(data, 8); } } static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) NO_INLINE; static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) { uint8_t pecount = 0; for (uint8_t i = 0; i < size; ++i) { uint8_t data; sync_recv(); data = serial_read_chunk(&pecount, 8); buffer[i] = data; } return pecount == 0; } inline static void change_sender2reciver(void) { sync_send(); // 0 serial_delay_half1(); // 1 serial_low(); // 2 serial_input_with_pullup(); // 2 serial_delay_half1(); // 3 } inline static void change_reciver2sender(void) { sync_recv(); // 0 serial_delay(); // 1 serial_low(); // 3 serial_output(); // 3 serial_delay_half1(); // 4 } static inline uint8_t nibble_bits_count(uint8_t bits) { bits = (bits & 0x5) + (bits >> 1 & 0x5); bits = (bits & 0x3) + (bits >> 2 & 0x3); return bits; } // interrupt handle to be used by the target device ISR(SERIAL_PIN_INTERRUPT) { # ifndef SERIAL_USE_MULTI_TRANSACTION serial_low(); serial_output(); SSTD_t *trans = Transaction_table; # else // recive transaction table index uint8_t tid, bits; uint8_t pecount = 0; sync_recv(); bits = serial_read_chunk(&pecount, 7); tid = bits >> 3; bits = (bits & 7) != nibble_bits_count(tid); if (bits || pecount > 0 || tid > Transaction_table_size) { return; } serial_delay_half1(); serial_high(); // response step1 low->high serial_output(); _delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT * SLAVE_INT_ACK_WIDTH); SSTD_t *trans = &Transaction_table[tid]; serial_low(); // response step2 ack high->low # endif // target send phase if (trans->target2initiator_buffer_size > 0) serial_send_packet((uint8_t *)trans->target2initiator_buffer, trans->target2initiator_buffer_size); // target switch to input change_sender2reciver(); // target recive phase if (trans->initiator2target_buffer_size > 0) { if (serial_recive_packet((uint8_t *)trans->initiator2target_buffer, trans->initiator2target_buffer_size)) { *trans->status = TRANSACTION_ACCEPTED; } else { *trans->status = TRANSACTION_DATA_ERROR; } } else { *trans->status = TRANSACTION_ACCEPTED; } sync_recv(); // weit initiator output to high } ///////// // start transaction by initiator // // int soft_serial_transaction(int sstd_index) // // Returns: // TRANSACTION_END // TRANSACTION_NO_RESPONSE // TRANSACTION_DATA_ERROR // this code is very time dependent, so we need to disable interrupts # ifndef SERIAL_USE_MULTI_TRANSACTION int soft_serial_transaction(void) { SSTD_t *trans = Transaction_table; # else int soft_serial_transaction(int sstd_index) { if (sstd_index > Transaction_table_size) return TRANSACTION_TYPE_ERROR; SSTD_t *trans = &Transaction_table[sstd_index]; # endif cli(); // signal to the target that we want to start a transaction serial_output(); serial_low(); _delay_us(SLAVE_INT_WIDTH_US); # ifndef SERIAL_USE_MULTI_TRANSACTION // wait for the target response serial_input_with_pullup(); _delay_us(SLAVE_INT_RESPONSE_TIME); // check if the target is present if (serial_read_pin()) { // target failed to pull the line low, assume not present serial_output(); serial_high(); *trans->status = TRANSACTION_NO_RESPONSE; sei(); return TRANSACTION_NO_RESPONSE; } # else // send transaction table index int tid = (sstd_index << 3) | (7 & nibble_bits_count(sstd_index)); sync_send(); _delay_sub_us(TID_SEND_ADJUST); serial_write_chunk(tid, 7); serial_delay_half1(); // wait for the target response (step1 low->high) serial_input_with_pullup(); while (!serial_read_pin()) { _delay_sub_us(2); } // check if the target is present (step2 high->low) for (int i = 0; serial_read_pin(); i++) { if (i > SLAVE_INT_ACK_WIDTH + 1) { // slave failed to pull the line low, assume not present serial_output(); serial_high(); *trans->status = TRANSACTION_NO_RESPONSE; sei(); return TRANSACTION_NO_RESPONSE; } _delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT); } # endif // initiator recive phase // if the target is present syncronize with it if (trans->target2initiator_buffer_size > 0) { if (!serial_recive_packet((uint8_t *)trans->target2initiator_buffer, trans->target2initiator_buffer_size)) { serial_output(); serial_high(); *trans->status = TRANSACTION_DATA_ERROR; sei(); return TRANSACTION_DATA_ERROR; } } // initiator switch to output change_reciver2sender(); // initiator send phase if (trans->initiator2target_buffer_size > 0) { serial_send_packet((uint8_t *)trans->initiator2target_buffer, trans->initiator2target_buffer_size); } // always, release the line when not in use sync_send(); *trans->status = TRANSACTION_END; sei(); return TRANSACTION_END; } # ifdef SERIAL_USE_MULTI_TRANSACTION int soft_serial_get_and_clean_status(int sstd_index) { SSTD_t *trans = &Transaction_table[sstd_index]; cli(); int retval = *trans->status; *trans->status = 0; ; sei(); return retval; } # endif #endif // Helix serial.c history // 2018-1-29 fork from let's split and add PD2, modify sync_recv() (#2308, bceffdefc) // 2018-6-28 bug fix master to slave comm and speed up (#3255, 1038bbef4) // (adjusted with avr-gcc 4.9.2) // 2018-7-13 remove USE_SERIAL_PD2 macro (#3374, f30d6dd78) // (adjusted with avr-gcc 4.9.2) // 2018-8-11 add support multi-type transaction (#3608, feb5e4aae) // (adjusted with avr-gcc 4.9.2) // 2018-10-21 fix serial and RGB animation conflict (#4191, 4665e4fff) // (adjusted with avr-gcc 7.3.0) // 2018-10-28 re-adjust compiler depend value of delay (#4269, 8517f8a66) // (adjusted with avr-gcc 5.4.0, 7.3.0) // 2018-12-17 copy to TOP/quantum/split_common/ and remove backward compatibility code (#4669)