/* Copyright 2017 Jason Williams
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "is31fl3731.h"
#include
#include
#include
#include
#include "TWIlib.h"
#include "progmem.h"
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define ISSI_ADDR_DEFAULT 0x74
#define ISSI_REG_CONFIG 0x00
#define ISSI_REG_CONFIG_PICTUREMODE 0x00
#define ISSI_REG_CONFIG_AUTOPLAYMODE 0x08
#define ISSI_REG_CONFIG_AUDIOPLAYMODE 0x18
#define ISSI_CONF_PICTUREMODE 0x00
#define ISSI_CONF_AUTOFRAMEMODE 0x04
#define ISSI_CONF_AUDIOMODE 0x08
#define ISSI_REG_PICTUREFRAME 0x01
#define ISSI_REG_SHUTDOWN 0x0A
#define ISSI_REG_AUDIOSYNC 0x06
#define ISSI_COMMANDREGISTER 0xFD
#define ISSI_BANK_FUNCTIONREG 0x0B // helpfully called 'page nine'
// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[TXMAXBUFLEN];
// These buffers match the IS31FL3731 PWM registers 0x24-0xB3.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in IS31FL3731_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][144];
bool g_pwm_buffer_update_required = false;
uint8_t g_led_control_registers[DRIVER_COUNT][18] = { { 0 }, { 0 } };
bool g_led_control_registers_update_required = false;
typedef struct
{
uint8_t red_register;
uint8_t red_bit;
uint8_t green_register;
uint8_t green_bit;
uint8_t blue_register;
uint8_t blue_bit;
} led_control_bitmask;
// This is the bit pattern in the LED control registers
// (for matrix A, add one to register for matrix B)
//
// reg - b7 b6 b5 b4 b3 b2 b1 b0
// 0x00 - R08,R07,R06,R05,R04,R03,R02,R01
// 0x02 - G08,G07,G06,G05,G04,G03,G02,R00
// 0x04 - B08,B07,B06,B05,B04,B03,G01,G00
// 0x06 - - , - , - , - , - ,B02,B01,B00
// 0x08 - - , - , - , - , - , - , - , -
// 0x0A - B17,B16,B15, - , - , - , - , -
// 0x0C - G17,G16,B14,B13,B12,B11,B10,B09
// 0x0E - R17,G15,G14,G13,G12,G11,G10,G09
// 0x10 - R16,R15,R14,R13,R12,R11,R10,R09
const led_control_bitmask g_led_control_bitmask[18] =
{
{ 0x02, 0, 0x04, 0, 0x06, 0 }, // R00,G00,B00
{ 0x00, 0, 0x04, 1, 0x06, 1 }, // R01,G01,B01
{ 0x00, 1, 0x02, 1, 0x06, 2 }, // R02,G02,B02
{ 0x00, 2, 0x02, 2, 0x04, 2 }, // R03,G03,B03
{ 0x00, 3, 0x02, 3, 0x04, 3 }, // R04,G04,B04
{ 0x00, 4, 0x02, 4, 0x04, 4 }, // R05,G05,B05
{ 0x00, 5, 0x02, 5, 0x04, 5 }, // R06,G06,B06
{ 0x00, 6, 0x02, 6, 0x04, 6 }, // R07,G07,B07
{ 0x00, 7, 0x02, 7, 0x04, 7 }, // R08,G08,B08
{ 0x10, 0, 0x0E, 0, 0x0C, 0 }, // R09,G09,B09
{ 0x10, 1, 0x0E, 1, 0x0C, 1 }, // R10,G10,B10
{ 0x10, 2, 0x0E, 2, 0x0C, 2 }, // R11,G11,B11
{ 0x10, 3, 0x0E, 3, 0x0C, 3 }, // R12,G12,B12
{ 0x10, 4, 0x0E, 4, 0x0C, 4 }, // R13,G13,B13
{ 0x10, 5, 0x0E, 5, 0x0C, 5 }, // R14,G14,B14
{ 0x10, 6, 0x0E, 6, 0x0A, 5 }, // R15,G15,B15
{ 0x10, 7, 0x0C, 6, 0x0A, 6 }, // R16,G16,B16
{ 0x0E, 7, 0x0C, 7, 0x0A, 7 }, // R17,G17,B17
};
const uint8_t g_map_control_index_to_register[2][18][3] PROGMEM = {
{
{0x34, 0x44, 0x54}, // 00
{0x24, 0x45, 0x55}, // 01
{0x25, 0x35, 0x56}, // 02
{0x26, 0x36, 0x46}, // 03
{0x27, 0x37, 0x47}, // 04
{0x28, 0x38, 0x48}, // 05
{0x29, 0x39, 0x49}, // 06
{0x2a, 0x3a, 0x4a}, // 07
{0x2b, 0x3b, 0x4b}, // 08
{0xa4, 0x94, 0x84}, // 09
{0xa5, 0x95, 0x85}, // 10
{0xa6, 0x96, 0x86}, // 11
{0xa7, 0x97, 0x87}, // 12
{0xa8, 0x98, 0x88}, // 13
{0xa9, 0x99, 0x89}, // 14
{0xaa, 0x9a, 0x79}, // 15
{0xab, 0x8a, 0x7a}, // 16
{0x9b, 0x8b, 0x7b} // 17
}, {
{0x34 + 8, 0x44 + 8, 0x54 + 8}, // 00
{0x24 + 8, 0x45 + 8, 0x55 + 8}, // 01
{0x25 + 8, 0x35 + 8, 0x56 + 8}, // 02
{0x26 + 8, 0x36 + 8, 0x46 + 8}, // 03
{0x27 + 8, 0x37 + 8, 0x47 + 8}, // 04
{0x28 + 8, 0x38 + 8, 0x48 + 8}, // 05
{0x29 + 8, 0x39 + 8, 0x49 + 8}, // 06
{0x2a + 8, 0x3a + 8, 0x4a + 8}, // 07
{0x2b + 8, 0x3b + 8, 0x4b + 8}, // 08
{0xa4 + 8, 0x94 + 8, 0x84 + 8}, // 09
{0xa5 + 8, 0x95 + 8, 0x85 + 8}, // 10
{0xa6 + 8, 0x96 + 8, 0x86 + 8}, // 11
{0xa7 + 8, 0x97 + 8, 0x87 + 8}, // 12
{0xa8 + 8, 0x98 + 8, 0x88 + 8}, // 13
{0xa9 + 8, 0x99 + 8, 0x89 + 8}, // 14
{0xaa + 8, 0x9a + 8, 0x79 + 8}, // 15
{0xab + 8, 0x8a + 8, 0x7a + 8}, // 16
{0x9b + 8, 0x8b + 8, 0x7b + 8} // 17
}};
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
{
g_twi_transfer_buffer[0] = (addr << 1) | 0x00;
g_twi_transfer_buffer[1] = reg;
g_twi_transfer_buffer[2] = data;
// Set the error code to have no relevant information
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
// Continuously attempt to transmit data until a successful transmission occurs
//while ( TWIInfo.errorCode != 0xFF )
//{
TWITransmitData( g_twi_transfer_buffer, 3, 0 );
//}
}
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
{
// assumes bank is already selected
// transmit PWM registers in 9 transfers of 16 bytes
// g_twi_transfer_buffer[] is 20 bytes
// set the I2C address
g_twi_transfer_buffer[0] = (addr << 1) | 0x00;
// iterate over the pwm_buffer contents at 16 byte intervals
for ( int i = 0; i < 144; i += 16 )
{
// set the first register, e.g. 0x24, 0x34, 0x44, etc.
g_twi_transfer_buffer[1] = 0x24 + i;
// copy the data from i to i+15
// device will auto-increment register for data after the first byte
// thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer
for ( int j = 0; j < 16; j++ )
{
g_twi_transfer_buffer[2 + j] = pwm_buffer[i + j];
}
// Set the error code to have no relevant information
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
// Continuously attempt to transmit data until a successful transmission occurs
while ( TWIInfo.errorCode != 0xFF )
{
TWITransmitData( g_twi_transfer_buffer, 16 + 2, 0 );
}
}
}
void IS31FL3731_init( uint8_t addr )
{
// In order to avoid the LEDs being driven with garbage data
// in the LED driver's PWM registers, first enable software shutdown,
// then set up the mode and other settings, clear the PWM registers,
// then disable software shutdown.
// select "function register" bank
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// enable software shutdown
IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
// this delay was copied from other drivers, might not be needed
_delay_ms( 10 );
// picture mode
IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
// display frame 0
IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
// audio sync off
IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );
// select bank 0
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
// turn off all LEDs in the LED control register
for ( int i = 0x00; i <= 0x11; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// turn off all LEDs in the blink control register (not really needed)
for ( int i = 0x12; i <= 0x23; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// set PWM on all LEDs to 0
for ( int i = 0x24; i <= 0xB3; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// select "function register" bank
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// disable software shutdown
IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );
// select bank 0 and leave it selected.
// most usage after initialization is just writing PWM buffers in bank 0
// as there's not much point in double-buffering
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
}
void map_index_to_led( uint8_t index, is31_led *led ) {
//led = , sizeof(struct is31_led));
// led->driver = addr->driver;
// led->matrix = addr->matrix;
// led->modifier = addr->modifier;
// led->control_index = addr->control_index;
// led->matrix_co.raw = addr->matrix_co.raw;
// led->driver = (pgm_read_byte(addr) >> 6) && 0b11;
// led->matrix = (pgm_read_byte(addr) >> 4) && 0b1;
// led->modifier = (pgm_read_byte(addr) >> 3) && 0b1;
// led->control_index = pgm_read_byte(addr+1);
// led->matrix_co.raw = pgm_read_byte(addr+2);
}
void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue )
{
if ( index >= 0 && index < DRIVER_LED_TOTAL )
{
is31_led led = g_is31_leds[index];
//map_index_to_led(index, &led);
// Subtract 0x24 to get the second index of g_pwm_buffer
g_pwm_buffer[led.driver][ pgm_read_byte(&g_map_control_index_to_register[led.matrix][led.control_index][0]) - 0x24] = red;
g_pwm_buffer[led.driver][ pgm_read_byte(&g_map_control_index_to_register[led.matrix][led.control_index][1]) - 0x24] = green;
g_pwm_buffer[led.driver][ pgm_read_byte(&g_map_control_index_to_register[led.matrix][led.control_index][2]) - 0x24] = blue;
g_pwm_buffer_update_required = true;
}
}
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue )
{
for ( int i = 0; i < DRIVER_LED_TOTAL; i++ )
{
IS31FL3731_set_color( i, red, green, blue );
}
}
void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue )
{
is31_led led = g_is31_leds[index];
// map_index_to_led(index, &led);
led_control_bitmask bitmask = g_led_control_bitmask[led.control_index];
// Matrix A and B registers are interleaved.
// Add 1 to Matrix A register to get Matrix B register
if ( red )
{
g_led_control_registers[led.driver][bitmask.red_register+led.matrix] |= (1<