#include "quantum.h" #include "backlight.h" #include <hal.h> #include "debug.h" // Maximum duty cycle limit #ifndef BACKLIGHT_LIMIT_VAL # define BACKLIGHT_LIMIT_VAL 255 #endif // GPIOV2 && GPIOV3 #ifndef BACKLIGHT_PAL_MODE # define BACKLIGHT_PAL_MODE 2 #endif // GENERIC #ifndef BACKLIGHT_PWM_DRIVER # define BACKLIGHT_PWM_DRIVER PWMD4 #endif #ifndef BACKLIGHT_PWM_CHANNEL # define BACKLIGHT_PWM_CHANNEL 3 #endif // Support for pins which are on TIM1_CH1N - requires STM32_PWM_USE_ADVANCED #ifdef BACKLIGHT_PWM_COMPLEMENTARY_OUTPUT # if BACKLIGHT_ON_STATE == 1 # define PWM_OUTPUT_MODE PWM_COMPLEMENTARY_OUTPUT_ACTIVE_LOW; # else # define PWM_OUTPUT_MODE PWM_COMPLEMENTARY_OUTPUT_ACTIVE_HIGH; # endif #else # if BACKLIGHT_ON_STATE == 1 # define PWM_OUTPUT_MODE PWM_OUTPUT_ACTIVE_HIGH; # else # define PWM_OUTPUT_MODE PWM_OUTPUT_ACTIVE_LOW; # endif #endif static PWMConfig pwmCFG = {0xFFFF, /* PWM clock frequency */ 256, /* PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */ NULL, /* Breathing Callback */ { /* Default all channels to disabled - Channels will be configured durring init */ {PWM_OUTPUT_DISABLED, NULL}, {PWM_OUTPUT_DISABLED, NULL}, {PWM_OUTPUT_DISABLED, NULL}, {PWM_OUTPUT_DISABLED, NULL}}, 0, /* HW dependent part.*/ 0}; // See http://jared.geek.nz/2013/feb/linear-led-pwm static uint16_t cie_lightness(uint16_t v) { if (v <= 5243) // if below 8% of max return v / 9; // same as dividing by 900% else { uint32_t y = (((uint32_t)v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare // to get a useful result with integer division, we shift left in the expression above // and revert what we've done again after squaring. y = y * y * y >> 8; if (y > 0xFFFFUL) // prevent overflow return 0xFFFFU; else return (uint16_t)y; } } static uint32_t rescale_limit_val(uint32_t val) { // rescale the supplied backlight value to be in terms of the value limit return (val * (BACKLIGHT_LIMIT_VAL + 1)) / 256; } void backlight_init_ports(void) { #ifdef USE_GPIOV1 palSetPadMode(PAL_PORT(BACKLIGHT_PIN), PAL_PAD(BACKLIGHT_PIN), PAL_MODE_STM32_ALTERNATE_PUSHPULL); #else palSetPadMode(PAL_PORT(BACKLIGHT_PIN), PAL_PAD(BACKLIGHT_PIN), PAL_MODE_ALTERNATE(BACKLIGHT_PAL_MODE)); #endif pwmCFG.channels[BACKLIGHT_PWM_CHANNEL - 1].mode = PWM_OUTPUT_MODE; pwmStart(&BACKLIGHT_PWM_DRIVER, &pwmCFG); backlight_set(get_backlight_level()); #ifdef BACKLIGHT_BREATHING if (is_backlight_breathing()) { breathing_enable(); } #endif } void backlight_set(uint8_t level) { if (level > BACKLIGHT_LEVELS) level = BACKLIGHT_LEVELS; if (level == 0) { // Turn backlight off pwmDisableChannel(&BACKLIGHT_PWM_DRIVER, BACKLIGHT_PWM_CHANNEL - 1); } else { // Turn backlight on uint32_t duty = (uint32_t)(cie_lightness(rescale_limit_val(0xFFFF * (uint32_t)level / BACKLIGHT_LEVELS))); pwmEnableChannel(&BACKLIGHT_PWM_DRIVER, BACKLIGHT_PWM_CHANNEL - 1, PWM_FRACTION_TO_WIDTH(&BACKLIGHT_PWM_DRIVER, 0xFFFF, duty)); } } void backlight_task(void) {} #ifdef BACKLIGHT_BREATHING # define BREATHING_STEPS 128 /* To generate breathing curve in python: * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)] */ static const uint8_t breathing_table[BREATHING_STEPS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void breathing_callback(PWMDriver *pwmp); bool is_breathing(void) { return pwmCFG.callback != NULL; } void breathing_enable(void) { pwmCFG.callback = breathing_callback; pwmEnablePeriodicNotification(&BACKLIGHT_PWM_DRIVER); } void breathing_disable(void) { pwmCFG.callback = NULL; pwmDisablePeriodicNotification(&BACKLIGHT_PWM_DRIVER); // Restore backlight level backlight_set(get_backlight_level()); } // Use this before the cie_lightness function. static inline uint16_t scale_backlight(uint16_t v) { return v / BACKLIGHT_LEVELS * get_backlight_level(); } void breathing_callback(PWMDriver *pwmp) { uint8_t breathing_period = get_breathing_period(); uint16_t interval = (uint16_t)breathing_period * 256 / BREATHING_STEPS; // resetting after one period to prevent ugly reset at overflow. static uint16_t breathing_counter = 0; breathing_counter = (breathing_counter + 1) % (breathing_period * 256); uint8_t index = breathing_counter / interval % BREATHING_STEPS; uint32_t duty = cie_lightness(rescale_limit_val(scale_backlight(breathing_table[index] * 256))); chSysLockFromISR(); pwmEnableChannelI(pwmp, BACKLIGHT_PWM_CHANNEL - 1, PWM_FRACTION_TO_WIDTH(&BACKLIGHT_PWM_DRIVER, 0xFFFF, duty)); chSysUnlockFromISR(); } // TODO: integrate generic pulse solution void breathing_pulse(void) { backlight_set(is_backlight_enabled() ? 0 : BACKLIGHT_LEVELS); wait_ms(10); backlight_set(is_backlight_enabled() ? get_backlight_level() : 0); } #endif