qmk_firmware/drivers/arm/twi2c.c
2018-02-15 02:06:06 -05:00

195 lines
5.7 KiB
C

/* Copyright 2018 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "twi2c.h"
#include <string.h>
#include <hal.h>
#include "hal_i2cslave.h"
#include "chprintf.h"
#include "memstreams.h"
#include "printf.h"
#include "matrix.h"
#ifndef I2C_DRIVER
#define I2C_DRIVER I2CD1
#endif
/**
* I2C slave test routine.
*
* To use: Add file to a project, call startComms() with the address of a serial stream
*
* There are two different responses:
* a) A read-only transaction - returns the "Initial Reply" message
* b) A write then read transaction - calls a message processor and returns the generated reply.
* Stretches clock until reply available.
*/
static const I2CConfig uniI2CConfig = {
STM32_TIMINGR_PRESC(15U) |
STM32_TIMINGR_SCLDEL(4U) | STM32_TIMINGR_SDADEL(2U) |
STM32_TIMINGR_SCLH(15U) | STM32_TIMINGR_SCLL(21U),
0,
0,
NULL
};
char initialReplyBody[50] = "Initial reply"; // 'Status' response if read without preceding write
uint32_t messageCounter = 0; /* Counts number of messages received to return as part of response */
uint8_t rxBody[240]; /* stores last message master sent us (intentionally a few bytes smaller than txBody) */
uint8_t txBody[MATRIX_ROWS/2]; /* Return message buffer for computed replies */
BaseSequentialStream *chp = NULL; // Used for serial logging
// Handler when something sent to us
const I2CSlaveMsg echoRx =
{
sizeof(rxBody), /* max sizeof received msg body */
rxBody, /* body of received msg */
NULL, /* do nothing on address match */
twi2c_slave_message_process, /* Routine to process received messages */
catchError /* Error hook */
};
// 'Empty' reply when nothing to say, and no message received. In RAM, to allow update
I2CSlaveMsg initialReply =
{
sizeof(initialReplyBody), /* trailing zero byte will be repeated as needed */
(uint8_t *)initialReplyBody,
NULL, /* do nothing on address match */
NULL, /* do nothing after reply sent */
catchError /* Error hook */
};
// Response to received messages
I2CSlaveMsg echoReply = { /* this is in RAM so size may be updated */
0, /* filled in with the length of the message to send */
txBody, /* Response message */
NULL, /* do nothing special on address match */
clearAfterSend, /* Clear receive buffer once replied */
catchError /* Error hook */
};
/**
* Track I2C errors
*/
uint8_t gotI2cError = 0;
uint32_t lastI2cErrorFlags = 0;
// Called from ISR to log error
void noteI2cError(uint32_t flags)
{
lastI2cErrorFlags = flags;
gotI2cError = 1;
}
/**
* Generic error handler
*
* Called in interrupt context, so need to watch what we do
*/
void catchError(I2CDriver *i2cp)
{
noteI2cError(i2cp->errors);
}
extern void matrix_copy(matrix_row_t * copy);
const char hexString[16] = "0123456789abcdef";
/**
* Message processor - looks at received message, determines reply as quickly as possible
*
* Responds with the value of the messageCounter (in hex), followed by the received message in [..]
*
* Note: Called in interrupt context, so need to be quick!
*/
void twi2c_slave_message_process(I2CDriver *i2cp) {
// size_t len = i2cSlaveBytes(i2cp); // Number of bytes received
matrix_copy(txBody);
echoReply.size = MATRIX_ROWS / 2;
i2cSlaveReplyI(i2cp, &echoReply);
}
/**
* Callback after sending of response complete - restores default reply in case polled
*/
void clearAfterSend(I2CDriver *i2cp)
{
echoReply.size = 0; // Clear receive message
i2cSlaveReplyI(i2cp, &initialReply);
}
/**
* Start the I2C Slave port to accept comms from master CPU
*
* We then go into a loop checking for errors, and never return
*/
void twi2c_slave_init(void) {
palSetGroupMode(GPIOB,8,9, PAL_MODE_INPUT); // Try releasing special pins for a short time
chThdSleepMilliseconds(10);
/* I2C1 SCL on PF1, SDA on PF0 */
palSetPadMode(GPIOB, 9, PAL_MODE_ALTERNATE(4) | PAL_STM32_OTYPE_OPENDRAIN | PAL_STM32_PUPDR_PULLUP);
palSetPadMode(GPIOB, 8, PAL_MODE_ALTERNATE(4) | PAL_STM32_OTYPE_OPENDRAIN | PAL_STM32_PUPDR_PULLUP);
i2cStart(&I2C_DRIVER, &uniI2CConfig);
#if HAL_USE_I2C_SLAVE
I2C_DRIVER.slaveTimeout = MS2ST(100); // Time for complete message
#endif
i2cSlaveConfigure(&I2C_DRIVER, &echoRx, &initialReply);
// Enable match address after everything else set up
i2cMatchAddress(&I2C_DRIVER, slaveI2Caddress/2);
// i2cMatchAddress(&I2C_DRIVER, myOtherI2Caddress/2);
// i2cMatchAddress(&I2C_DRIVER, 0); /* "all call" */
printf("Slave I2C started\n\r");
}
void twi2c_slave_task(void) {
if (gotI2cError) {
gotI2cError = 0;
printf("I2cError: %04x\r\n", lastI2cErrorFlags);
}
}
void twi2c_master_init(void) {
i2cStart(&I2C_DRIVER, &uniI2CConfig);
}
msg_t twi2c_master_send(i2caddr_t address, const uint8_t * txbuf, uint8_t * rxbuf, systime_t timeout) {
return i2cMasterTransmitTimeout(&I2C_DRIVER, address, txbuf, sizeof(txbuf), rxbuf, sizeof(rxbuf), timeout);
}