qmk_firmware/quantum/split_common/transport.c
Casey Webster 5e2b53541b
Add modifier state to the split keyboard transport (#10400)
* Add modifier state to the split transport

This adds modifier state to the i2c and serial transport for split
keyboards.  The purpose of this is to allow e.g. displaying modifier
state on the slave side of a split keyboard on an oled.  This adds one
byte to the data transferred between halves.

This also fixes a missing ifdef guard for BLACKLIGHT_ENABLE.

Break modifiers into real/weak/oneshot

Fix incorrect slave serial mod setting

Fix typo in serial weal mod setter

Fix build errors for the I2C code that I introduced

Code cleanup and formatting per project preferences

Correctly get oneshot mods

Fix missing braces

Remove unneeded ifdef guard

Make the added state transport optional

Add documentation for the new define to enable this feature

Fix stray grave mark

* Fix error introduced in conflict resolution
2020-12-17 16:21:26 +11:00

369 lines
11 KiB
C

#include <string.h>
#include <stddef.h>
#include "config.h"
#include "matrix.h"
#include "quantum.h"
#define ROWS_PER_HAND (MATRIX_ROWS / 2)
#define SYNC_TIMER_OFFSET 2
#ifdef RGBLIGHT_ENABLE
# include "rgblight.h"
#endif
#ifdef BACKLIGHT_ENABLE
# include "backlight.h"
#endif
#ifdef ENCODER_ENABLE
# include "encoder.h"
static pin_t encoders_pad[] = ENCODERS_PAD_A;
# define NUMBER_OF_ENCODERS (sizeof(encoders_pad) / sizeof(pin_t))
#endif
#if defined(USE_I2C)
# include "i2c_master.h"
# include "i2c_slave.h"
typedef struct _I2C_slave_buffer_t {
# ifndef DISABLE_SYNC_TIMER
uint32_t sync_timer;
# endif
matrix_row_t smatrix[ROWS_PER_HAND];
# ifdef SPLIT_MODS_ENABLE
uint8_t real_mods;
uint8_t weak_mods;
# ifndef NO_ACTION_ONESHOT
uint8_t oneshot_mods;
# endif
# endif
# ifdef BACKLIGHT_ENABLE
uint8_t backlight_level;
# endif
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
rgblight_syncinfo_t rgblight_sync;
# endif
# ifdef ENCODER_ENABLE
uint8_t encoder_state[NUMBER_OF_ENCODERS];
# endif
# ifdef WPM_ENABLE
uint8_t current_wpm;
# endif
} I2C_slave_buffer_t;
static I2C_slave_buffer_t *const i2c_buffer = (I2C_slave_buffer_t *)i2c_slave_reg;
# define I2C_KEYMAP_START offsetof(I2C_slave_buffer_t, smatrix)
# define I2C_REAL_MODS_START offsetof(I2C_slave_buffer_t, real_mods)
# define I2C_WEAK_MODS_START offsetof(I2C_slave_buffer_t, weak_mods)
# define I2C_ONESHOT_MODS_START offsetof(I2C_slave_buffer_t, oneshot_mods)
# define I2C_BACKLIGHT_START offsetof(I2C_slave_buffer_t, backlight_level)
# define I2C_RGB_START offsetof(I2C_slave_buffer_t, rgblight_sync)
# define I2C_SYNC_TIME_START offsetof(I2C_slave_buffer_t, sync_timer)
# define I2C_KEYMAP_START offsetof(I2C_slave_buffer_t, smatrix)
# define I2C_ENCODER_START offsetof(I2C_slave_buffer_t, encoder_state)
# define I2C_WPM_START offsetof(I2C_slave_buffer_t, current_wpm)
# define TIMEOUT 100
# ifndef SLAVE_I2C_ADDRESS
# define SLAVE_I2C_ADDRESS 0x32
# endif
// Get rows from other half over i2c
bool transport_master(matrix_row_t matrix[]) {
i2c_readReg(SLAVE_I2C_ADDRESS, I2C_KEYMAP_START, (void *)matrix, sizeof(i2c_buffer->smatrix), TIMEOUT);
// write backlight info
# ifdef BACKLIGHT_ENABLE
uint8_t level = is_backlight_enabled() ? get_backlight_level() : 0;
if (level != i2c_buffer->backlight_level) {
if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_BACKLIGHT_START, (void *)&level, sizeof(level), TIMEOUT) >= 0) {
i2c_buffer->backlight_level = level;
}
}
# endif
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
if (rgblight_get_change_flags()) {
rgblight_syncinfo_t rgblight_sync;
rgblight_get_syncinfo(&rgblight_sync);
if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_RGB_START, (void *)&rgblight_sync, sizeof(rgblight_sync), TIMEOUT) >= 0) {
rgblight_clear_change_flags();
}
}
# endif
# ifdef ENCODER_ENABLE
i2c_readReg(SLAVE_I2C_ADDRESS, I2C_ENCODER_START, (void *)i2c_buffer->encoder_state, sizeof(i2c_buffer->encoder_state), TIMEOUT);
encoder_update_raw(i2c_buffer->encoder_state);
# endif
# ifdef WPM_ENABLE
uint8_t current_wpm = get_current_wpm();
if (current_wpm != i2c_buffer->current_wpm) {
if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_WPM_START, (void *)&current_wpm, sizeof(current_wpm), TIMEOUT) >= 0) {
i2c_buffer->current_wpm = current_wpm;
}
}
# endif
# ifdef SPLIT_MODS_ENABLE
uint8_t real_mods = get_mods();
if (real_mods != i2c_buffer->real_mods) {
if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_REAL_MODS_START, (void *)&real_mods, sizeof(real_mods), TIMEOUT) >= 0) {
i2c_buffer->real_mods = real_mods;
}
}
uint8_t weak_mods = get_weak_mods();
if (weak_mods != i2c_buffer->weak_mods) {
if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_WEAK_MODS_START, (void *)&weak_mods, sizeof(weak_mods), TIMEOUT) >= 0) {
i2c_buffer->weak_mods = weak_mods;
}
}
# ifndef NO_ACTION_ONESHOT
uint8_t oneshot_mods = get_oneshot_mods();
if (oneshot_mods != i2c_buffer->oneshot_mods) {
if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_ONESHOT_MODS_START, (void *)&oneshot_mods, sizeof(oneshot_mods), TIMEOUT) >= 0) {
i2c_buffer->oneshot_mods = oneshot_mods;
}
}
# endif
# endif
# ifndef DISABLE_SYNC_TIMER
i2c_buffer->sync_timer = sync_timer_read32() + SYNC_TIMER_OFFSET;
i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_SYNC_TIME_START, (void *)&i2c_buffer->sync_timer, sizeof(i2c_buffer->sync_timer), TIMEOUT);
# endif
return true;
}
void transport_slave(matrix_row_t matrix[]) {
# ifndef DISABLE_SYNC_TIMER
sync_timer_update(i2c_buffer->sync_timer);
# endif
// Copy matrix to I2C buffer
memcpy((void *)i2c_buffer->smatrix, (void *)matrix, sizeof(i2c_buffer->smatrix));
// Read Backlight Info
# ifdef BACKLIGHT_ENABLE
backlight_set(i2c_buffer->backlight_level);
# endif
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
// Update the RGB with the new data
if (i2c_buffer->rgblight_sync.status.change_flags != 0) {
rgblight_update_sync(&i2c_buffer->rgblight_sync, false);
i2c_buffer->rgblight_sync.status.change_flags = 0;
}
# endif
# ifdef ENCODER_ENABLE
encoder_state_raw(i2c_buffer->encoder_state);
# endif
# ifdef WPM_ENABLE
set_current_wpm(i2c_buffer->current_wpm);
# endif
# ifdef SPLIT_MODS_ENABLE
set_mods(i2c_buffer->real_mods);
set_weak_mods(i2c_buffer->weak_mods);
# ifndef NO_ACTION_ONESHOT
set_oneshot_mods(i2c_buffer->oneshot_mods);
# endif
# endif
}
void transport_master_init(void) { i2c_init(); }
void transport_slave_init(void) { i2c_slave_init(SLAVE_I2C_ADDRESS); }
#else // USE_SERIAL
# include "serial.h"
typedef struct _Serial_s2m_buffer_t {
// TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack
matrix_row_t smatrix[ROWS_PER_HAND];
# ifdef ENCODER_ENABLE
uint8_t encoder_state[NUMBER_OF_ENCODERS];
# endif
} Serial_s2m_buffer_t;
typedef struct _Serial_m2s_buffer_t {
# ifdef SPLIT_MODS_ENABLE
uint8_t real_mods;
uint8_t weak_mods;
# ifndef NO_ACTION_ONESHOT
uint8_t oneshot_mods;
# endif
# endif
# ifndef DISABLE_SYNC_TIMER
uint32_t sync_timer;
# endif
# ifdef BACKLIGHT_ENABLE
uint8_t backlight_level;
# endif
# ifdef WPM_ENABLE
uint8_t current_wpm;
# endif
} Serial_m2s_buffer_t;
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
// When MCUs on both sides drive their respective RGB LED chains,
// it is necessary to synchronize, so it is necessary to communicate RGB
// information. In that case, define RGBLIGHT_SPLIT with info on the number
// of LEDs on each half.
//
// Otherwise, if the master side MCU drives both sides RGB LED chains,
// there is no need to communicate.
typedef struct _Serial_rgblight_t {
rgblight_syncinfo_t rgblight_sync;
} Serial_rgblight_t;
volatile Serial_rgblight_t serial_rgblight = {};
uint8_t volatile status_rgblight = 0;
# endif
volatile Serial_s2m_buffer_t serial_s2m_buffer = {};
volatile Serial_m2s_buffer_t serial_m2s_buffer = {};
uint8_t volatile status0 = 0;
enum serial_transaction_id {
GET_SLAVE_MATRIX = 0,
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
PUT_RGBLIGHT,
# endif
};
SSTD_t transactions[] = {
[GET_SLAVE_MATRIX] =
{
(uint8_t *)&status0,
sizeof(serial_m2s_buffer),
(uint8_t *)&serial_m2s_buffer,
sizeof(serial_s2m_buffer),
(uint8_t *)&serial_s2m_buffer,
},
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
[PUT_RGBLIGHT] =
{
(uint8_t *)&status_rgblight, sizeof(serial_rgblight), (uint8_t *)&serial_rgblight, 0, NULL // no slave to master transfer
},
# endif
};
void transport_master_init(void) { soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }
void transport_slave_init(void) { soft_serial_target_init(transactions, TID_LIMIT(transactions)); }
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
// rgblight synchronization information communication.
void transport_rgblight_master(void) {
if (rgblight_get_change_flags()) {
rgblight_get_syncinfo((rgblight_syncinfo_t *)&serial_rgblight.rgblight_sync);
if (soft_serial_transaction(PUT_RGBLIGHT) == TRANSACTION_END) {
rgblight_clear_change_flags();
}
}
}
void transport_rgblight_slave(void) {
if (status_rgblight == TRANSACTION_ACCEPTED) {
rgblight_update_sync((rgblight_syncinfo_t *)&serial_rgblight.rgblight_sync, false);
status_rgblight = TRANSACTION_END;
}
}
# else
# define transport_rgblight_master()
# define transport_rgblight_slave()
# endif
bool transport_master(matrix_row_t matrix[]) {
# ifndef SERIAL_USE_MULTI_TRANSACTION
if (soft_serial_transaction() != TRANSACTION_END) {
return false;
}
# else
transport_rgblight_master();
if (soft_serial_transaction(GET_SLAVE_MATRIX) != TRANSACTION_END) {
return false;
}
# endif
// TODO: if MATRIX_COLS > 8 change to unpack()
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[i] = serial_s2m_buffer.smatrix[i];
}
# ifdef BACKLIGHT_ENABLE
// Write backlight level for slave to read
serial_m2s_buffer.backlight_level = is_backlight_enabled() ? get_backlight_level() : 0;
# endif
# ifdef ENCODER_ENABLE
encoder_update_raw((uint8_t *)serial_s2m_buffer.encoder_state);
# endif
# ifdef WPM_ENABLE
// Write wpm to slave
serial_m2s_buffer.current_wpm = get_current_wpm();
# endif
# ifdef SPLIT_MODS_ENABLE
serial_m2s_buffer.real_mods = get_mods();
serial_m2s_buffer.weak_mods = get_weak_mods();
# ifndef NO_ACTION_ONESHOT
serial_m2s_buffer.oneshot_mods = get_oneshot_mods();
# endif
# endif
# ifndef DISABLE_SYNC_TIMER
serial_m2s_buffer.sync_timer = sync_timer_read32() + SYNC_TIMER_OFFSET;
# endif
return true;
}
void transport_slave(matrix_row_t matrix[]) {
transport_rgblight_slave();
# ifndef DISABLE_SYNC_TIMER
sync_timer_update(serial_m2s_buffer.sync_timer);
# endif
// TODO: if MATRIX_COLS > 8 change to pack()
for (int i = 0; i < ROWS_PER_HAND; ++i) {
serial_s2m_buffer.smatrix[i] = matrix[i];
}
# ifdef BACKLIGHT_ENABLE
backlight_set(serial_m2s_buffer.backlight_level);
# endif
# ifdef ENCODER_ENABLE
encoder_state_raw((uint8_t *)serial_s2m_buffer.encoder_state);
# endif
# ifdef WPM_ENABLE
set_current_wpm(serial_m2s_buffer.current_wpm);
# endif
# ifdef SPLIT_MODS_ENABLE
set_mods(serial_m2s_buffer.real_mods);
set_weak_mods(serial_m2s_buffer.weak_mods);
# ifndef NO_ACTION_ONESHOT
set_oneshot_mods(serial_m2s_buffer.oneshot_mods);
# endif
# endif
}
#endif