mmme1028 leture l2.1
This commit is contained in:
parent
7fe2281f5b
commit
1e625bbefe
@ -445,3 +445,131 @@ b. Use the graphical/trigonometric method o check your answer.
|
||||
|
||||
</details>
|
||||
|
||||
# Lecture L2.1
|
||||
|
||||
## Hooke's Law and Young's Modulus
|
||||
|
||||
Hooke's law states that the extension of an object experiencing a force is proportonal to the force.
|
||||
|
||||
We can generalize this to be more useful creating:
|
||||
|
||||
- Direct stress:
|
||||
|
||||
$$ \sigma = \frac F {A_0} $$
|
||||
|
||||
- Direct strain:
|
||||
|
||||
$$ \epsilon = \frac {\Delta L}{L_0} $$
|
||||
|
||||
Using these more generalized variables, Young defined Young's Modulus, $E$, which is a universal
|
||||
constant of stiffness of a material.
|
||||
|
||||
$$ \sigma = E\epsilon $$
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Calculating Young's Modulus of a Piece of Silicone
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
L_0 &= 4.64 \\
|
||||
w_0 &= 0.10 \\
|
||||
t_0 &= 150\times10^{-6} \\
|
||||
F &= 1.40\times9.81 \\
|
||||
L &= 6.33 \\
|
||||
w &= 0.086 \\
|
||||
t &= 125\times10^{-6} \\
|
||||
\\
|
||||
\sigma &= \frac F {A_0} = \frac F {w_0t_0} = \frac{1.4\times9.81}{0.1\times150\times10^{-6}} = 915600 \\
|
||||
\epsilon &= \frac{\Delta L}{L_0} = \frac{6.33 - 4.64}{4.64} = 0.36422...\\
|
||||
E &= \frac \sigma \epsilon = 2513836.686 = 2.5\times10^6 \text{ Pa}
|
||||
\end{align*}
|
||||
|
||||
</details>
|
||||
|
||||
## Stress Strain Curves
|
||||
|
||||
![](./images/vimscrot-2021-11-01T09:50:51,184232288+00:00.png)
|
||||
|
||||
## Poisson's Ration
|
||||
|
||||
For most materiajs, their cross sectionts change when they are stretched or compressed.
|
||||
This is to keep their volume constant.
|
||||
|
||||
$$ \epsilon_x = \frac {\Delta L}{L_0} $$
|
||||
$$ \epsilon_y = \frac {\Delta w}{w_0} $$
|
||||
$$ \epsilon_z = \frac {\Delta t}{t_0} $$
|
||||
|
||||
Poissons' ratio, $\nu$ (the greek letter _nu_, not v), is the ratio of lateral strain to axial
|
||||
strain:
|
||||
|
||||
$$ \nu = \frac{\epsilon_y}{\epsilon_x} = \frac{\epsilon_z}{\epsilon_x} $$
|
||||
|
||||
<details>
|
||||
</summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Measuring Poisson's Ratio
|
||||
|
||||
</summary>
|
||||
|
||||
\begin{align*}
|
||||
L_0 &= 4.64 \\
|
||||
w_0 &= 0.10 \\
|
||||
t_0 &= 150\times10^{-6} \\
|
||||
\\
|
||||
L &= 6.33 \\
|
||||
w &= 0.086 \\
|
||||
t &= 125\times10^{-6} \\
|
||||
\\
|
||||
\epsilon_x &= \frac {\Delta L}{L_0} = 0.364 \\
|
||||
\epsilon_y &= \frac {\Delta w}{w_0} = -0.14 \\
|
||||
\epsilon_z &= \frac {\Delta t}{t_0} = -0.167 \\
|
||||
\\
|
||||
\nu_y &= \frac{\epsilon_y}{\epsilon_x} = \frac{-0.14}{0.364} = -0.38 \\
|
||||
\nu_z &= \frac{\epsilon_z}{\epsilon_x} = \frac{-0.167}{0.364} = -0.46 \\
|
||||
\end{align*}
|
||||
|
||||
It's supposed to be that $\nu_y = \nu_z$ but I guess it's close enough right? lol
|
||||
|
||||
</details>
|
||||
|
||||
## Typical Values of Young's Modulus and Poisson's Ratio
|
||||
|
||||
Material | Young's Modulus / GPa | Poisson's Ratio
|
||||
-------- | --------------------- | ---------------
|
||||
Steel | 210 | 0.29
|
||||
Aluminum | 69 | 0.34
|
||||
Concrete | 14 | 0.1
|
||||
Nylon | 3 | 0.4
|
||||
Rubber | 0.01 | 0.495
|
||||
|
||||
## Direct Stresses and Shear Stresses
|
||||
|
||||
![](./images/vimscrot-2021-11-01T10:35:47,339443980+00:00.png)
|
||||
|
||||
- A direct stress acts normal to the surface
|
||||
- A shear stress acts tangential to the surface
|
||||
|
||||
Shear stress is defined in the same way as direct stress but given the symbol $tau$ (tau):
|
||||
|
||||
$$ \tau = \frac F A $$
|
||||
|
||||
Shear strain is defined as the shear angle $\gamma$:
|
||||
|
||||
$$ \gamma \approx \tan\gamma = {\frac x {L_0}} $$
|
||||
|
||||
The shear modulus, $G$, is like Young's Modulus but for shear forces:
|
||||
|
||||
$$ \tau = G\gamma $$
|
||||
|
||||
## Relationship between Young's Modulus and Shear Modulus
|
||||
|
||||
$$ G = \frac E {2(1+\nu)} $$
|
||||
|
||||
$G \approx \frac E 3$ is a good approximation in a lot of engineering cases
|
||||
|
Loading…
Reference in New Issue
Block a user