notes on vectors: corrections

This commit is contained in:
Akbar Rahman 2022-03-03 23:12:41 +00:00
parent a085632759
commit 422cedff86
Signed by: alvierahman90
GPG Key ID: 20609519444A1269
3 changed files with 15 additions and 10 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 17 KiB

View File

@ -96,18 +96,19 @@ $i\cdot j = i\cdot k = j\cdot k = 0$.
The vector product between two vectors is defined by: The vector product between two vectors is defined by:
$$\pmb a \times \pmb b = |\pmb a||\pmb b|\sin\theta \pmb n$$ $$\pmb a \times \pmb b = |\pmb a||\pmb b|\sin\theta \hat{\pmb n}$$
where $0 \le \theta \le \pi$ is the angle between $\pmb a$ and $\pmb b$ and $\pmb n$ is a unit where $0 \le \theta \le \pi$ is the angle between $\pmb a$ and $\pmb b$ and $\pmb n$ is a unit
vector such that the three vectors from a right handed system: vector such that the three vectors from a right handed system:
![](./images/vimscrot-2022-02-18T20:11:12,072203286+00:00.png) ![](./images/vimscrot-2022-02-18T20:11:12,072203286+00:00.png)
- $\pmb a \times \pmb b = -\pmb b \times \pmb a$ (the vector product is non-commutative[^d_commutative]) - $\pmb a \times \pmb b = -\pmb b \times \pmb a$ (the vector product is anti-commutative[^d_commutative])
- If $\pmb a \times \pmb b = 0$ then either - If $\pmb a \times \pmb b = 0$ then either
i. The vectors are parralel i. The vectors are parallel
ii. One or both of the vectors are a zero vector ii. One or both of the vectors are a zero vector
- $(k_1\pmb a)\times(k_2\pmb b) = (k_1k_2)(\pmb a \times \pmb b)$ where $k_1$, $k_2$ are scalars - $(k_1\pmb a)\times(k_2\pmb b) = (k_1k_2)(\pmb a \times \pmb b)$ where $k_1$, $k_2$ are scalars
- If $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$ then - If $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$ then
@ -151,13 +152,13 @@ by those vectors:
## The Unit Vector ## The Unit Vector
$$\hat a = \frac{a}{|a|}$$ $$\hat{\pmb a}= \frac{\pmb a}{|\pmb a|}$$
## Components of a Vector ## Components of a Vector
The component of a vector $\pmb a$ in the direction of the unit vector $\pmb n$ is The component of a vector $\pmb a$ in the direction of the **unit vector** $\hat{\pmb n}$ is
$$\pmb a \cdot \pmb n$$ $$\pmb a \cdot \hat{\pmb n}$$
![](./images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png) ![](./images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png)
@ -173,9 +174,9 @@ If $\pmb a = a_1\pmb i + a_2\pmb j + a_3\pmb k$ then the scalars $a_1$, $a_2$, a
### Vector Projections ### Vector Projections
The *vector projection* of $\pmb a$ onto $\pmb n$ is given by The *vector projection* of $\pmb a$ onto $\hat{\pmb n}$ is given by
$$(\pmb a \cdot \pmb n)\pmb n$$ $$(\pmb a \cdot \hat{\pmb n})\hat{\pmb n}$$
![](./images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png) ![](./images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png)
@ -206,6 +207,10 @@ $$\cos\theta = \frac{\pmb a \cdot \pmb b}{|\pmb a||\pmb b|} = \frac{a_1b_1 + a_2
## Application of Vectors to Geometry ## Application of Vectors to Geometry
### Area of a Parallelogram
$$area = |\pmb a||\pmb b|\sin\theta = |\pmb a \times \pmb b|$$
### Equation of a Straight Line ### Equation of a Straight Line
A straight line can be specified by A straight line can be specified by
@ -271,7 +276,7 @@ $$(\pmb r - \pmb a) \cdot \pmb n = 0$$
So the *vector equation* of the plane is So the *vector equation* of the plane is
$$\pmb r \cdot \pmb n = \pmb a \cdot \pmb n = \pmb d$$ $$\pmb r \cdot \pmb n = \pmb a \cdot \pmb n = D$$
where $\pmb r = (x, y, z)$ and the vectors $\pmb a$ and $\pmb n$ are known. where $\pmb r = (x, y, z)$ and the vectors $\pmb a$ and $\pmb n$ are known.
@ -280,7 +285,7 @@ Suppose $\pmb a$, $\pmb n$, and $\pmb r$ are given by
\begin{align*} \begin{align*}
\pmb a &= (x_0, y_0, z_0) \\ \pmb a &= (x_0, y_0, z_0) \\
\pmb n &= (l, m, p) \\ \pmb n &= (l, m, p) \\
\pmb n &= (x, y, z)\\ \pmb r &= (x, y, z)\\
\text{then } 0 &= ((x, y, z) - (x_0, y_0, z_0))\cdot(l, m, p) \text{then } 0 &= ((x, y, z) - (x_0, y_0, z_0))\cdot(l, m, p)
\end{align*} \end{align*}