notes on vectors: corrections
This commit is contained in:
parent
a085632759
commit
422cedff86
Binary file not shown.
Before Width: | Height: | Size: 11 KiB After Width: | Height: | Size: 18 KiB |
Binary file not shown.
Before Width: | Height: | Size: 11 KiB After Width: | Height: | Size: 17 KiB |
@ -96,18 +96,19 @@ $i\cdot j = i\cdot k = j\cdot k = 0$.
|
|||||||
|
|
||||||
The vector product between two vectors is defined by:
|
The vector product between two vectors is defined by:
|
||||||
|
|
||||||
$$\pmb a \times \pmb b = |\pmb a||\pmb b|\sin\theta \pmb n$$
|
$$\pmb a \times \pmb b = |\pmb a||\pmb b|\sin\theta \hat{\pmb n}$$
|
||||||
|
|
||||||
where $0 \le \theta \le \pi$ is the angle between $\pmb a$ and $\pmb b$ and $\pmb n$ is a unit
|
where $0 \le \theta \le \pi$ is the angle between $\pmb a$ and $\pmb b$ and $\pmb n$ is a unit
|
||||||
vector such that the three vectors from a right handed system:
|
vector such that the three vectors from a right handed system:
|
||||||
|
|
||||||
![](./images/vimscrot-2022-02-18T20:11:12,072203286+00:00.png)
|
![](./images/vimscrot-2022-02-18T20:11:12,072203286+00:00.png)
|
||||||
|
|
||||||
- $\pmb a \times \pmb b = -\pmb b \times \pmb a$ (the vector product is non-commutative[^d_commutative])
|
- $\pmb a \times \pmb b = -\pmb b \times \pmb a$ (the vector product is anti-commutative[^d_commutative])
|
||||||
- If $\pmb a \times \pmb b = 0$ then either
|
- If $\pmb a \times \pmb b = 0$ then either
|
||||||
|
|
||||||
i. The vectors are parralel
|
i. The vectors are parallel
|
||||||
ii. One or both of the vectors are a zero vector
|
ii. One or both of the vectors are a zero vector
|
||||||
|
|
||||||
- $(k_1\pmb a)\times(k_2\pmb b) = (k_1k_2)(\pmb a \times \pmb b)$ where $k_1$, $k_2$ are scalars
|
- $(k_1\pmb a)\times(k_2\pmb b) = (k_1k_2)(\pmb a \times \pmb b)$ where $k_1$, $k_2$ are scalars
|
||||||
- If $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$ then
|
- If $\pmb a = (a_1, a_2, a_3)$ and $\pmb b = (b_1, b_2, b_3)$ then
|
||||||
|
|
||||||
@ -151,13 +152,13 @@ by those vectors:
|
|||||||
|
|
||||||
## The Unit Vector
|
## The Unit Vector
|
||||||
|
|
||||||
$$\hat a = \frac{a}{|a|}$$
|
$$\hat{\pmb a}= \frac{\pmb a}{|\pmb a|}$$
|
||||||
|
|
||||||
## Components of a Vector
|
## Components of a Vector
|
||||||
|
|
||||||
The component of a vector $\pmb a$ in the direction of the unit vector $\pmb n$ is
|
The component of a vector $\pmb a$ in the direction of the **unit vector** $\hat{\pmb n}$ is
|
||||||
|
|
||||||
$$\pmb a \cdot \pmb n$$
|
$$\pmb a \cdot \hat{\pmb n}$$
|
||||||
|
|
||||||
![](./images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png)
|
![](./images/vimscrot-2022-02-18T20:34:50,128465689+00:00.png)
|
||||||
|
|
||||||
@ -173,9 +174,9 @@ If $\pmb a = a_1\pmb i + a_2\pmb j + a_3\pmb k$ then the scalars $a_1$, $a_2$, a
|
|||||||
|
|
||||||
### Vector Projections
|
### Vector Projections
|
||||||
|
|
||||||
The *vector projection* of $\pmb a$ onto $\pmb n$ is given by
|
The *vector projection* of $\pmb a$ onto $\hat{\pmb n}$ is given by
|
||||||
|
|
||||||
$$(\pmb a \cdot \pmb n)\pmb n$$
|
$$(\pmb a \cdot \hat{\pmb n})\hat{\pmb n}$$
|
||||||
|
|
||||||
![](./images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png)
|
![](./images/vimscrot-2022-02-18T21:40:15,724449945+00:00.png)
|
||||||
|
|
||||||
@ -206,6 +207,10 @@ $$\cos\theta = \frac{\pmb a \cdot \pmb b}{|\pmb a||\pmb b|} = \frac{a_1b_1 + a_2
|
|||||||
|
|
||||||
## Application of Vectors to Geometry
|
## Application of Vectors to Geometry
|
||||||
|
|
||||||
|
### Area of a Parallelogram
|
||||||
|
|
||||||
|
$$area = |\pmb a||\pmb b|\sin\theta = |\pmb a \times \pmb b|$$
|
||||||
|
|
||||||
### Equation of a Straight Line
|
### Equation of a Straight Line
|
||||||
|
|
||||||
A straight line can be specified by
|
A straight line can be specified by
|
||||||
@ -271,7 +276,7 @@ $$(\pmb r - \pmb a) \cdot \pmb n = 0$$
|
|||||||
|
|
||||||
So the *vector equation* of the plane is
|
So the *vector equation* of the plane is
|
||||||
|
|
||||||
$$\pmb r \cdot \pmb n = \pmb a \cdot \pmb n = \pmb d$$
|
$$\pmb r \cdot \pmb n = \pmb a \cdot \pmb n = D$$
|
||||||
|
|
||||||
where $\pmb r = (x, y, z)$ and the vectors $\pmb a$ and $\pmb n$ are known.
|
where $\pmb r = (x, y, z)$ and the vectors $\pmb a$ and $\pmb n$ are known.
|
||||||
|
|
||||||
@ -280,7 +285,7 @@ Suppose $\pmb a$, $\pmb n$, and $\pmb r$ are given by
|
|||||||
\begin{align*}
|
\begin{align*}
|
||||||
\pmb a &= (x_0, y_0, z_0) \\
|
\pmb a &= (x_0, y_0, z_0) \\
|
||||||
\pmb n &= (l, m, p) \\
|
\pmb n &= (l, m, p) \\
|
||||||
\pmb n &= (x, y, z)\\
|
\pmb r &= (x, y, z)\\
|
||||||
\text{then } 0 &= ((x, y, z) - (x_0, y_0, z_0))\cdot(l, m, p)
|
\text{then } 0 &= ((x, y, z) - (x_0, y_0, z_0))\cdot(l, m, p)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user