notes on digital electronics
126
uni/mmme/2051_electromechanical_devices/digital_electronics.md
Executable file
@ -0,0 +1,126 @@
|
|||||||
|
---
|
||||||
|
author: Akbar Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME2051 // Digital Electronics
|
||||||
|
tags: [ digital, serial, parallel, encoders, shaft_encoders ]
|
||||||
|
uuid: 7d355a2f-68c7-4352-a164-7d51006ca137
|
||||||
|
lecture_slides: [ ./lecture_slides/MMME2051EMD_Lecture4.pdf, ./lecture_slides/MMME2051EMD_Lecture5.pdf ]
|
||||||
|
lecture_notes: []
|
||||||
|
exercise_sheets: [ ./exercise_sheets/Exercise Sheet 6 - Digital Electonics 1.pdf, ./exercise_sheets/Exercise Sheet 7 - Digital Electonics 2.pdf ]
|
||||||
|
---
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
# Errata
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
## Lecture Slides 5, p56
|
||||||
|
|
||||||
|
1. The graph showing values of $O_1$, $O_2$, and $O_3$ are incorrect:
|
||||||
|
|
||||||
|
- $O_3$ should stay low throughout
|
||||||
|
- $O_2$ should stay low until after the fourth pulse
|
||||||
|
- $O_1$ should be low until the third pulse, high between third and fourth, and then go back to low
|
||||||
|
|
||||||
|
2. There is no mention that $O_4$ is the most significant bit and $O_1$ the least.
|
||||||
|
|
||||||
|
## Lecture Slides 5, p62-91
|
||||||
|
|
||||||
|
1. The title should be *Digital-to-Analog Converter (DAC)*
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
# Shaft Encoder
|
||||||
|
|
||||||
|
A shaft encoder can provide angular position, angular speed, and direction.
|
||||||
|
|
||||||
|
![A simple shaft encoder which can only detect speed by using a light source and a light dependent resistor.](./images/vimscrot-2023-03-02T11:20:42,254588604+00:00.png)
|
||||||
|
|
||||||
|
|
||||||
|
![A motor position encoder provides the angle of the shaft, allowing the angular velocity to be calculated.](./images/vimscrot-2023-03-02T11:21:28,818484079+00:00.png)
|
||||||
|
|
||||||
|
|
||||||
|
![An incremental shaft encoder has a pulse Z which gives speed and outputs A and B can be used to detect the direction of rotation as the pulses are phase shited by a quarter cycle.](./images/vimscrot-2023-03-02T11:23:18,428027299+00:00.png)
|
||||||
|
|
||||||
|
# Memory in Computers
|
||||||
|
|
||||||
|
An OR gate can be used to create a *latch* which will stay high until it is reset:
|
||||||
|
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-03-02T11:27:47,797530860+00:00.png)
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-03-02T11:27:56,816525086+00:00.png)
|
||||||
|
|
||||||
|
## Set/Reset Latch
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-03-02T11:28:48,754069731+00:00.png)
|
||||||
|
|
||||||
|
An equivalent circuit can be built by replacing the NOR gates with NAND gates and taking NOTing the
|
||||||
|
inputs before applying them (lecture 5 slides, p27).
|
||||||
|
|
||||||
|
## Enabling a Latch
|
||||||
|
|
||||||
|
![The outputs of this circuit will remain constant while E is low.](./images/vimscrot-2023-03-02T11:33:17,227770085+00:00.png)
|
||||||
|
|
||||||
|
## Delay Gated Latch
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-03-02T11:34:46,470336694+00:00.png)
|
||||||
|
|
||||||
|
This latch allows memory to be set/reset without having a reset line.
|
||||||
|
|
||||||
|
# Clock
|
||||||
|
|
||||||
|
A clock signal is a square waveform.
|
||||||
|
The higher the frequency of the signal, the faster processing can happen.
|
||||||
|
One step of processing is expected to happen per clock pulse.
|
||||||
|
A clock pulse is usually considered to be its rising edge:
|
||||||
|
|
||||||
|
![A clock pulse with the rising edge highlighted in blue and the falling edge in red.](./images/vimscrot-2023-03-02T11:52:38,262923088+00:00.png)
|
||||||
|
|
||||||
|
## JK Flip-Flop
|
||||||
|
|
||||||
|
Flip-flops differ from latches mainly by the fact
|
||||||
|
they are edge triggered (triggered by the edge of the clock pulse, rather than by change in input signals).
|
||||||
|
|
||||||
|
$$Q_\text{next} = J \bar Q + \bar K Q$$
|
||||||
|
|
||||||
|
Clock | J | K | $Q_\text{next}$ | $\bar Q_\text{next}$
|
||||||
|
----- | --- | --- | --- | ---
|
||||||
|
0 $\rightarrow$ 1 | 0 | 0 | $Q$ | $\bar Q$
|
||||||
|
0 $\rightarrow$ 1 | 0 | 1 | 0 | 1
|
||||||
|
0 $\rightarrow$ 1 | 1 | 0 | 0 | 0
|
||||||
|
0 $\rightarrow$ 1 | 1 | 1 | $\bar Q$ | $Q$
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-03-02T12:00:50,868501744+00:00.png)
|
||||||
|
|
||||||
|
## Serial to Parallel Conversion with JK Flip-Flops
|
||||||
|
|
||||||
|
There are [errors](#errata) in lecture slides relating to this section.
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-03-02T12:16:57,368571510+00:00.png)
|
||||||
|
|
||||||
|
# Digital to Analog Converter (DAC)
|
||||||
|
|
||||||
|
![A 4-bit DAC](./images/vimscrot-2023-03-02T12:30:58,854924598+00:00.png)
|
||||||
|
|
||||||
|
$V_\text{out}$ can be expressed as the following:
|
||||||
|
|
||||||
|
$$V_\text{out} = \sum D_n\frac{1}{2^n}V_\text{max}$$
|
||||||
|
|
||||||
|
where $D_n$ is 1 for an high input and 0 for a low input.
|
||||||
|
|
||||||
|
The lecture slides go through the circuitry step by step (lecture 5, p62-91).
|
||||||
|
|
||||||
|
# Comparator
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-03-02T12:45:54,622443687+00:00.png)
|
||||||
|
|
||||||
|
If the positive input is larger than the negative, the output is high.
|
||||||
|
|
||||||
|
# Analog Digital Converter (ADC)
|
||||||
|
|
||||||
|
![](./images/vimscrot-2023-03-02T12:48:03,763983627+00:00.png)
|
||||||
|
|
||||||
|
Explanation in lecture slides (lecture 5, p93-94) and on flash converters (lecture 5, p95).
|
After Width: | Height: | Size: 60 KiB |
After Width: | Height: | Size: 32 KiB |
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 6.0 KiB |
After Width: | Height: | Size: 9.0 KiB |
After Width: | Height: | Size: 16 KiB |
After Width: | Height: | Size: 23 KiB |
After Width: | Height: | Size: 25 KiB |
After Width: | Height: | Size: 2.3 KiB |
After Width: | Height: | Size: 9.5 KiB |
After Width: | Height: | Size: 4.3 KiB |
After Width: | Height: | Size: 27 KiB |
After Width: | Height: | Size: 40 KiB |
After Width: | Height: | Size: 5.5 KiB |
After Width: | Height: | Size: 34 KiB |