Create notes on mmme1029 lecture 1

This commit is contained in:
Akbar Rahman 2021-10-04 12:33:49 +01:00
parent 7cb6475616
commit 7f6c583509
Signed by: alvierahman90
GPG Key ID: 20609519444A1269

106
mechanical/mmme1029_materials.md Executable file
View File

@ -0,0 +1,106 @@
---
author: Alvie Rahman
date: \today
title: MMME1029 // Materials
tags: [ uni, nottingham, mmme1029, materials ]
---
# Lecture 1 (2021-10-04)
## 1A Reading Notes
### Classification of Energy-Related Materials
- Passive materials---do not take part in energy conversion e.g. structures in pipelines, turbine
blades, oil drills
- Active materials---directly take part in energy conversion e.g. solar cells, batteries, catalysts,
superconducting magnests
- The material and chemical problems for conventional energy systems are mostly well understood and
usually associated wit structural and mechanical properties or long standing chemical effects like
corrosion:
- fossil fuels
- hydroelectric
- oil from shale and tar
- sands
- coal gasification
- liquefaction
- geothermal energy
- wind power
- bomass conversion
- solar cells
- nuclear reactors
### Applications of Energy-Related Materials
#### High Temperature Materials (and Theoretical Thermodynamic Efficiency)
- Thermodynamics indicated that the higher the temperature, the greater the efficiency of heat to
work:
$= \frac{T_{high}-T_{low}}{T_{high}}$ (in kelvin)
- The first steam engines were only 1% efficient, while modern steam engines are 35% efficient
primarily due to improved high-temperature materials.
- Early engines made from cast iron while modern engines made from alloys containing nickel,
molybdenum, chromium, and silicon, which don't fail at temperature above 540 \textdegree{}C
- Modern combustion engines are nearing the limits of metals so new materials that can function
at even higher temperatures must be found--- particularly intermetallic compounds and ceramics are
being developed
## Types of Stainless Steel
- Type 304---common; iron, carbon, nickel, and chromium
- Type 316---expensive; iron, carbon, chromium, nickel, molybdenum
## Self Quiz 1
1. What is made of billion year old carbon + water + sprinkling of stardust?
> Me
2. What are the main classifications of metals?
> Metals, glass and ceramics, plastics, elastomers,
3. [There are] Few Iron Age artefacts left. Why?
> They rusted away
4. What is maens by 'the micro-structure of a material'?
> The very small scale structure of a material which can have strong influence on its physical
> properties like toughness and ductility and corrosion resistance
5. What is a 'micrograph' of a material?
> A picture taken through a microscope
6. What microscope is used to investage the microstructure of a material down to a 1 micron scale
resolution?
> Optical Microscope
7. What microscope is used [to investigate] the microstructure of a material down to a 100 nm scale
resolution?
> Scanning Electron Microscope
8. What length scales did you see in the first slide set?
> 1 mm, 0.5 mm, 1.5 \textmu{}m
9. What material properties were mentioned in the first slide set?
> Hardness, brittleness, melting point, corrosion, density, thermal insulation
## Self Quiz 2
1. What is the effect of lowering the temperature of rubber?
> Makes it more brittle, much less elastic and flexible
2. What material properties were mentioned in the second slide set?
> Young's modulus, specific heat, coefficient of thermal expansion