Finish writing up notes on matrices lecture 1
This commit is contained in:
parent
ee73b7cf2f
commit
8a059f5a8e
@ -124,7 +124,7 @@ always hold true as there are many solutions.
|
|||||||
|
|
||||||
- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series:
|
- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series:
|
||||||
|
|
||||||
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ... $$
|
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $$
|
||||||
|
|
||||||
- The function $f(x) = e^{-x}$ is just $\frac 1 {e^x}$
|
- The function $f(x) = e^{-x}$ is just $\frac 1 {e^x}$
|
||||||
- Note the important properties:
|
- Note the important properties:
|
||||||
@ -391,7 +391,7 @@ $$z^3 = 8i$$
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
# Matrices (and Simultaneous Equations)
|
# Systems of Equations (Simultaneous Equations)
|
||||||
|
|
||||||
## Gaussian Elimination
|
## Gaussian Elimination
|
||||||
|
|
||||||
@ -421,7 +421,7 @@ a = 0, b \ne 0 &\rightarrow \text{no solution for $x$} \\
|
|||||||
a = 0, b = 0 &\rightarrow \text{infinite solutions for $x$}
|
a = 0, b = 0 &\rightarrow \text{infinite solutions for $x$}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
### 2x2 System
|
### 2x2 Systems
|
||||||
|
|
||||||
A 2x2 system is one with 2 equations and 2 unknown variables.
|
A 2x2 system is one with 2 equations and 2 unknown variables.
|
||||||
|
|
||||||
@ -457,7 +457,7 @@ You can check the values for $x_1$ and $x_2$ are correct by substituting them in
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
### 3x3 System
|
### 3x3 Systems
|
||||||
|
|
||||||
A 3x3 system is one with 3 equations and 3 unknown variables.
|
A 3x3 system is one with 3 equations and 3 unknown variables.
|
||||||
|
|
||||||
@ -496,3 +496,290 @@ These values can be back-substituted into any of the first 3 equations to find o
|
|||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 2
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
x_1 + x_2 - 2x_3 &= 1 &R_1 \\
|
||||||
|
2x_1 - x_2 - x_3 &= 1 &R_2 \\
|
||||||
|
x_1 + 4x_2 + 7x_3 &= 2 &R_3 \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. Eliminate $x_1$ from $R_2$, $R_3$:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
x_1 + x_2 - 2x_3 &= 1 &R_1' = R_1\\
|
||||||
|
- 3x_2 - 5x_3 &= -1 &R_2' = R_2 - 2R_1 \\
|
||||||
|
3x_2 + 5x_3 &= 1 &R_3' = R_3 - R_1 \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
We've created another 2x2 system of $R_2'$ and $R_3'$
|
||||||
|
|
||||||
|
2. Eliminate $x_2$ from $R_3''$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
x_1 + x_2 - 2x_3 &= 1 &R_1'' = R_1' = R_1\\
|
||||||
|
- 3x_2 - 5x_3 &= -1 &R_2'' = R_2' = R_2 - 2R_1 \\
|
||||||
|
0x_3 &= 0 &R_3'' = R_3 '+ R_2' \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
We can see that $x_3$ can be any number, so there are infinite solutions. Let:
|
||||||
|
|
||||||
|
$$x_3 = t$$
|
||||||
|
|
||||||
|
where $t$ can be any number
|
||||||
|
|
||||||
|
3. Substitute $x_3$ into $R_2''$:
|
||||||
|
|
||||||
|
$$R_2'' = -3x_2 - 5t = -1 \rightarrow x_2 = \frac 1 3 - \frac{5t} 3$$
|
||||||
|
|
||||||
|
4. Substitute $x_2$ and $x_3$ into $R_1''$:
|
||||||
|
|
||||||
|
$$R_1'' = x_1 + \frac 1 3 - \frac{5t} 3 + 2t = 1 \rightarrow x_1 = \frac 2 3 - \frac t 3$$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Systems of Equations and Matrices
|
||||||
|
|
||||||
|
Many problems in engineering have a very large number of unknowns and equations to solve
|
||||||
|
simultaneously.
|
||||||
|
We can use matrices to solve these efficiently.
|
||||||
|
|
||||||
|
Take the following simultaneous equations::
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
3x_1 + 4x_2 &= 2 &\text{(1)} \\
|
||||||
|
x_1 + 2x_2 &= 0 &\text{(2)}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
They can be represented by the following matrices:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
A &= \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \\
|
||||||
|
\pmb x &= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\
|
||||||
|
\pmb b &= \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
You can then express the system as:
|
||||||
|
|
||||||
|
$$A\pmb x = \pmb b$$
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### A 3x3 System as a Matrix
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
2x_1 + 3x_2 - x_3 &= 5 \\
|
||||||
|
4x_1 + 4x_2 - 3x_3 &= 3 \\
|
||||||
|
2x_1 - 3x_2 + x_3 &= -1
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Could be expressed in the form $A\pmb x = \pmb b$ where:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
A &= \begin{pmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ 2 & -3 & -1 \end{pmatrix} \\
|
||||||
|
\pmb x &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\
|
||||||
|
\pmb b &= \begin{pmatrix} 5 \\ 3 \\ -1 \end{pmatrix} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### An $m\times n$ System as a Matrix
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
|
||||||
|
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
|
||||||
|
\cdots \\
|
||||||
|
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Could be expressed in the form $A\pmb x = \pmb b$ where:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\
|
||||||
|
a_{21} & a_{22} & \cdots & a_{2n} \\
|
||||||
|
\vdots & & & \vdots \\
|
||||||
|
a_{m1} & a_{m2} & \cdots & a_{mn}
|
||||||
|
\end{pmatrix},
|
||||||
|
\pmb x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},
|
||||||
|
\pmb b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
# Matrices
|
||||||
|
|
||||||
|
## Order of a Matrix
|
||||||
|
|
||||||
|
The order of a matrix is its size e.g. $3\times2$ or $m\times n$
|
||||||
|
|
||||||
|
## Column Vectors
|
||||||
|
|
||||||
|
- Column vectors are matrices with only one column:
|
||||||
|
|
||||||
|
$$ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 45 \\ 12 \end{pmatrix} $$
|
||||||
|
|
||||||
|
- Column vector variables typed up or printed are expressed in $\pmb{bold}$ and when it is
|
||||||
|
handwritten it is \underline{underlined}:
|
||||||
|
|
||||||
|
$$ \pmb x = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
|
||||||
|
|
||||||
|
## Matrix Algebra
|
||||||
|
|
||||||
|
### Equality
|
||||||
|
|
||||||
|
Two matrices are the same if:
|
||||||
|
|
||||||
|
- Their order is the same
|
||||||
|
- Their corresponding elements are the same
|
||||||
|
|
||||||
|
### Addition and Subtraction
|
||||||
|
|
||||||
|
Only possible if their order is the same.
|
||||||
|
\begin{align*}
|
||||||
|
A + B&= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
|
||||||
|
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
|
||||||
|
\vdots & & & \vdots \\
|
||||||
|
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn}
|
||||||
|
\end{pmatrix} \\
|
||||||
|
A - B&= \begin{pmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \\
|
||||||
|
a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \\
|
||||||
|
\vdots & & & \vdots \\
|
||||||
|
a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn}
|
||||||
|
\end{pmatrix},
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
### Zero Matrix
|
||||||
|
|
||||||
|
This is a matrix whose elements are all zeros.
|
||||||
|
For any matrix $A$,
|
||||||
|
|
||||||
|
$$A + 0 =A$$
|
||||||
|
|
||||||
|
We can only add matrices of the same order, therefore 0 must be of the same order as $A$.
|
||||||
|
|
||||||
|
### Multiplication
|
||||||
|
|
||||||
|
Let
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{matrix}
|
||||||
|
A & m\times n \\
|
||||||
|
B & p\times q
|
||||||
|
\end{matrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
To be able to multiply $A$ by $B$, $n = p$.
|
||||||
|
|
||||||
|
If $n \ne p$, then $AB$ does not exist.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{matrix}
|
||||||
|
A & B & = & C \\
|
||||||
|
m\times n & p \times q & & m\times q
|
||||||
|
\end{matrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
When $C = AB$ exists,
|
||||||
|
|
||||||
|
$$C_{ij} = \sum_r\! a_{ir}b_{rj}$$
|
||||||
|
|
||||||
|
That is, $C_{ij}$ is the 'product' of the $i$th row of $A$ and $j$th column of $B$.
|
||||||
|
|
||||||
|
#### Multiplication of a Matrix by a Scalar
|
||||||
|
|
||||||
|
If $\lambda$ is a scalar, we define
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lambda a = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\
|
||||||
|
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\
|
||||||
|
\vdots & & & \vdots \\
|
||||||
|
\lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn}
|
||||||
|
\end{pmatrix},
|
||||||
|
$$
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}
|
||||||
|
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} =
|
||||||
|
\begin{pmatrix} -3 & -1 \\ 3 & 4 \end{pmatrix}
|
||||||
|
$$
|
||||||
|
$$
|
||||||
|
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}
|
||||||
|
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} =
|
||||||
|
\begin{pmatrix} 2 & 1 \\ 7 & -1 \end{pmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
#### Example 2
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
$$
|
||||||
|
A = \begin{pmatrix} 4 & 1 & 6 \\ 3 & 2 & 1 \end{pmatrix},\,
|
||||||
|
B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}
|
||||||
|
$$
|
||||||
|
$$
|
||||||
|
AB = \begin{pmatrix} 11 & 6 \\ 6 & 7 \end{pmatrix},\,
|
||||||
|
BA = \begin{pmatrix} 7 & 3 & 7 \\ 10 & 5 & 8 \\ 4 & 1 & 6 \end{pmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Other Properties of Matrix Algebra
|
||||||
|
|
||||||
|
- $(\lambda A)B = \lambda(AB) = A(\lambda B)$
|
||||||
|
- $A(BC) = (AB)C = ABC$
|
||||||
|
- $(A+B)C = AC + BC$
|
||||||
|
- $C(A+B) = CA + CB$
|
||||||
|
- In general, $AB \ne BA$ even if both exist
|
||||||
|
- $AB = 0$ does not always mean $A = 0$ or $B = 0$:
|
||||||
|
|
||||||
|
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}3 & 0 \\ 0 & 0 \end{pmatrix} =
|
||||||
|
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
It follows that $AB = AC$ does not imply that $B=C$ as
|
||||||
|
|
||||||
|
$$AB = AC \leftrightarrow A(B + C) = 0$$
|
||||||
|
|
||||||
|
and as $A$ and $(B-C)$ are not necessarily 0, $B$ is not necessarily equal to $C$:
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}0 & 0 \\ 1 & 0 \end{pmatrix} =
|
||||||
|
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
|
||||||
|
|
||||||
|
and
|
||||||
|
|
||||||
|
$$AC = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}1 & 2 \\ 1 & 0 \end{pmatrix} =
|
||||||
|
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = AB$$
|
||||||
|
|
||||||
|
but $B \ne C$
|
||||||
|
|
||||||
|
</details>
|
||||||
|
Loading…
Reference in New Issue
Block a user