Lecture 3 - submerged surfaces
This commit is contained in:
parent
0040607bb1
commit
ee73b7cf2f
@ -243,3 +243,135 @@ p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
|
||||
- If there is no flow along the tube, then
|
||||
|
||||
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
|
||||
|
||||
# Lecture 3 // Submerged Surfaces
|
||||
|
||||
## Prepatory Maths
|
||||
|
||||
### Integration as Summation
|
||||
|
||||
### Centroids
|
||||
|
||||
- For a 3D body, the centre of gravity is the point at which all the mass can be considered to act
|
||||
- For a 2D lamina (thin, flat plate) the centroid is the centre of area, the point about which the
|
||||
lamina would balance
|
||||
|
||||
To find the location of the centroid, take moments (of area) about a suitable reference axis:
|
||||
|
||||
$$moment\,of\,area = moment\,of\,mass$$
|
||||
|
||||
(making the assumption that the surface has a unit mass per unit area)
|
||||
|
||||
$$moment\,of\,mass = mass\times distance\,from\,point\,acting\,around$$
|
||||
|
||||
Take the following lamina:
|
||||
|
||||
![](./images/vimscrot-2021-10-20T10:01:30,080819382+01:00.png)
|
||||
|
||||
1. Split the lamina into elements parallel to the chosen axis
|
||||
2. Each element has area $\delta A = w\delta y$
|
||||
3. The moment of area ($\delta M$) of the element is $\delta Ay$
|
||||
4. The sum of moments of all the elements is equal to the moment $M$ obtained by assuing all the
|
||||
area is located at the centroid or:
|
||||
|
||||
$$Ay_c = \int_{area} \! y\,\mathrm{d}A$$
|
||||
|
||||
or:
|
||||
|
||||
$$y_c = \frac 1 A \int_{area} \! y\,\mathrm{d}A$$
|
||||
|
||||
- $\int y\,\mathrm{d}A$ is known as the first moment of area
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
|
||||
#### Example 1
|
||||
|
||||
Determine the location of the centroid of a rectangular lamina.
|
||||
|
||||
</summary>
|
||||
|
||||
##### Determining Location in $y$ direction
|
||||
|
||||
![](./images/vimscrot-2021-10-20T10:14:17,688774145+01:00.png)
|
||||
|
||||
1. Take moments for area about $OO$
|
||||
|
||||
$$\delta M = y\delta A = y(b\delta y)$$
|
||||
|
||||
2. Integrate to find all strips
|
||||
|
||||
$$M = b\int_0^d\! y \,\mathrm{d}y = b\left[\frac{y^2}2\right]_0^d = \frac{bd^2} 2$$
|
||||
|
||||
($b$ can be taken out the integral as it is constant in this example)
|
||||
|
||||
but also $$M = (area)(y_c) = bdy_c$$
|
||||
|
||||
so $$y_c = \frac 1 {bd} \frac {bd} 2 = \frac d 2$$
|
||||
|
||||
##### Determining Location in $x$ direction
|
||||
|
||||
![](./images/vimscrot-2021-10-20T10:24:48,372189101+01:00.png)
|
||||
|
||||
1. Take moments for area about $O'O'$:
|
||||
|
||||
$$\delta M = x\delta A = x(d\delta x)$$
|
||||
|
||||
2. Integrate
|
||||
|
||||
$$M_{O'O'} = d\int_0^b\! x \,\mathrm{d}x = d\left[\frac{x^2} 2\right]_0^b = \frac{db^2} 2$$
|
||||
|
||||
but also $$M_{O'O'} = (area)(x_c) = bdx_c$$
|
||||
|
||||
so $$x_c = \frac{db^2}{2bd} = \frac b 2$$
|
||||
|
||||
</details>
|
||||
|
||||
## Horizontal Submereged Surfaces
|
||||
|
||||
![](./images/vimscrot-2021-10-20T10:33:16,783724117+01:00.png)
|
||||
|
||||
Assumptions for horizontal lamina:
|
||||
|
||||
- Constant pressure acts over entire surface of lamina
|
||||
- Centre of pressure will coincide with centre of area
|
||||
- $total\,force = pressure\times area$
|
||||
|
||||
![](./images/vimscrot-2021-10-20T10:36:12,520683729+01:00.png)
|
||||
|
||||
## Vertical Submerged Surfaces
|
||||
|
||||
![](./images/vimscrot-2021-10-20T11:05:33,235642932+01:00.png)
|
||||
|
||||
- A vertical submerged plate does experience uniform pressure
|
||||
- Centroid of pressure and area are not coincident
|
||||
- Centroid of pressure is always below centroid of area for a vertical plate
|
||||
- No shear forces, so all hydrostatic forces are perpendicular to lamina
|
||||
|
||||
![](./images/vimscrot-2021-10-20T11:07:52,929126609+01:00.png)
|
||||
|
||||
Force acting on small element:
|
||||
|
||||
\begin{align*}
|
||||
\delta F &= p\delta A \\
|
||||
&= \rho gh\delta A \\
|
||||
&= \rho gh w\delta h
|
||||
\end{align*}
|
||||
|
||||
Therefore total force is
|
||||
|
||||
$$F_p = \int_{area}\! \rho gh \,\mathrm{d}A = \int_{h_1}^{h_2}\! \rho ghw\,\mathrm{d}h$$
|
||||
|
||||
### Finding Line of Action of the Force
|
||||
|
||||
![](./images/vimscrot-2021-10-20T11:15:51,200869760+01:00.png)
|
||||
|
||||
\begin{align*}
|
||||
\delta M_{OO} &= \delta Fh = (\rho gh\delta A)h \\
|
||||
&= \rho gh^2\delta A = \rho gh^2w\delta h \\
|
||||
\\
|
||||
M_{OO} &= F_py_p = \int_{area}\! \rho gh^2 \,\mathrm{d}A \\
|
||||
&= \int_{h1}^{h2}\! \rho gh^2w \,\mathrm{d}h \\
|
||||
\\
|
||||
y_p = \frac{M_{OO}}{F_p}
|
||||
\end{align*}
|
||||
|
Loading…
Reference in New Issue
Block a user