Update headers
This commit is contained in:
parent
8a059f5a8e
commit
8a92779a67
@ -5,9 +5,9 @@ title: MMME1026 // Mathematics for Engineering
|
|||||||
tags: [ uni, nottingham, mmme1026, maths, complex_numbers ]
|
tags: [ uni, nottingham, mmme1026, maths, complex_numbers ]
|
||||||
---
|
---
|
||||||
|
|
||||||
# Lecture 1 // Complex Numbers (2021-10-04)
|
# Complex Numbers
|
||||||
|
|
||||||
## Complex Numbers
|
## What is a Complex Number?
|
||||||
|
|
||||||
- $i$ is the unit imaginary number, which is defined by:
|
- $i$ is the unit imaginary number, which is defined by:
|
||||||
|
|
||||||
@ -26,7 +26,7 @@ tags: [ uni, nottingham, mmme1026, maths, complex_numbers ]
|
|||||||
|
|
||||||
e.g. $$(3 + 4i) + (1 -2i) = (3+1) + i(4-2) = 2 + 2i$$
|
e.g. $$(3 + 4i) + (1 -2i) = (3+1) + i(4-2) = 2 + 2i$$
|
||||||
|
|
||||||
### Complex Conjugate
|
### The Complex Conjugate
|
||||||
|
|
||||||
Given complex number $z$:
|
Given complex number $z$:
|
||||||
|
|
||||||
@ -118,8 +118,6 @@ always hold true as there are many solutions.
|
|||||||
2. Find a value of $\theta$ such that $\tan \theta = \frac y x$ and check that it is consistent.
|
2. Find a value of $\theta$ such that $\tan \theta = \frac y x$ and check that it is consistent.
|
||||||
If it puts you in the wrong quadrant, add or subtract $\pi$.
|
If it puts you in the wrong quadrant, add or subtract $\pi$.
|
||||||
|
|
||||||
# Lecture 2 // Complex Numbers (2021-10-12)
|
|
||||||
|
|
||||||
## Exponential Functions
|
## Exponential Functions
|
||||||
|
|
||||||
- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series:
|
- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series:
|
||||||
|
@ -244,6 +244,95 @@ p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
|
|||||||
|
|
||||||
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
|
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
|
||||||
|
## Exercise Sheet 1
|
||||||
|
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
1. If 4 m$^3$ of oil weighs 35 kN calculate its density and relative density.
|
||||||
|
Relative density is a term used to define the density of a fluid relative
|
||||||
|
|
||||||
|
> $$ \frac{35000}{9.81\times4} = 890 \text{ kgm}^{-3} $$
|
||||||
|
>
|
||||||
|
> $$1000 - 891.9... = 108 \text{ kgm}^{-3}$$
|
||||||
|
|
||||||
|
2. Find the pressure relative to atmospheric experienced by a diver
|
||||||
|
working on the sea bed at a depth of 35 m.
|
||||||
|
Take the density of sea water to be 1030 kgm$^{-3}$.
|
||||||
|
|
||||||
|
> $$
|
||||||
|
> \rho gh = 1030\times 9.81 \times 35 = 3.5\times10^5
|
||||||
|
> $$
|
||||||
|
|
||||||
|
3. An open glass is sitting on a table, it has a diameter of 10 cm.
|
||||||
|
If water up to a height of 20 cm is now added calculate the force exerted onto the table by
|
||||||
|
the addition of the water.
|
||||||
|
|
||||||
|
> $$V_{cylinder} = \pi r^2h$$
|
||||||
|
> $$m_{cylinder} = \rho\pi r^2h$$
|
||||||
|
> $$W_{cylinder} = \rho g\pi r^2h = 1000\times9.8\pi\times0.05^2\times0.2 = 15.4 \text{ N} $$
|
||||||
|
|
||||||
|
4. A closed rectangular tank with internal dimensions 6m x 3m x 1.5m
|
||||||
|
high has a vertical riser pipe of cross-sectional area 0.001 m2 in
|
||||||
|
the upper surface (figure 1.4). The tank and riser are filled with
|
||||||
|
water such that the water level in the riser pipe is 3.5 m above the
|
||||||
|
|
||||||
|
Calulate:
|
||||||
|
|
||||||
|
i. The gauge pressure at the base of the tank.
|
||||||
|
|
||||||
|
> $$\rho gh = 1000\times9.81\times(1.5+3.5) = 49 \text{ kPa}$$
|
||||||
|
|
||||||
|
ii. The gauge pressure at the top of the tank.
|
||||||
|
|
||||||
|
> $$\rho gh = 1000\times9.81\times3.5 = 34 \text{ kPa}$$
|
||||||
|
|
||||||
|
iii. The force exercted on the base of the tank due to gauge water pressure.
|
||||||
|
|
||||||
|
> $$F = p\times A = 49\times10^3\times6\times3 = 8.8\times10^5 \text{ N}$$
|
||||||
|
|
||||||
|
iv. The weight of the water in the tank and riser.
|
||||||
|
|
||||||
|
> $$V = 6\times3\times1.5 + 0.001\times3.5 = 27.0035$$
|
||||||
|
> $$W = \rho gV = 1000\times9.8\times27.0035 = 2.6\times10^5\text{ N}$$
|
||||||
|
|
||||||
|
v. Explain the difference between (iii) and (iv).
|
||||||
|
|
||||||
|
*(It may be helpful to think about the forces on the top of the tank)*
|
||||||
|
|
||||||
|
> The pressure at the top of the tank is higher than atmospheric pressure because of the
|
||||||
|
> riser.
|
||||||
|
> This means there is an upwards force on the top of tank.
|
||||||
|
> The difference between the force acting up and down due to pressure is equal to the
|
||||||
|
> weight of the water.
|
||||||
|
|
||||||
|
6. A double U-tube manometer is connected to a pipe as shown below.
|
||||||
|
|
||||||
|
Taking the dimensions and fluids as indicated; calculate
|
||||||
|
the absolute pressure at point A (centre of the pipe).
|
||||||
|
|
||||||
|
Take atmospheric pressure as 1.01 bar and the density of mercury as 13600 kgm$^{-3}$.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
> \begin{align*}
|
||||||
|
P_B &= P_A + 0.4\rho_wg &\text{(1)}\\
|
||||||
|
P_C = P_{C'} &= P_B - 0.2\rho_mg &\text{(2)}\\
|
||||||
|
P_D = P_{at} &= P_A + 0.4\rho_wg &\text{(3)}\\
|
||||||
|
\\
|
||||||
|
\text{(2) into (3)} &\rightarrow P_B -0.2\rho_mg-0.1\rho_wg = P_{at} &\text{(4)}\\
|
||||||
|
\text{(1) into (4)} &\rightarrow P_A + 0.4\rho_wg - 0.2\rho_mg - 0.1\rho_wg = P_{at} \\
|
||||||
|
\\
|
||||||
|
P_A &= P_{at} + 0.1\rho_wg + 0.2\rho_mg - 0.4\rho_wg \\
|
||||||
|
&= P_{at} + g(0.2\rho_m - 0.3\rho_w) \\
|
||||||
|
&= 1.01\times10^5 + 9.81(0.2\times13600 - 0.3\times1000)\\
|
||||||
|
&= 124.7\text{ kPa}
|
||||||
|
> \end{align*}
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
# Lecture 3 // Submerged Surfaces
|
# Lecture 3 // Submerged Surfaces
|
||||||
|
|
||||||
## Prepatory Maths
|
## Prepatory Maths
|
||||||
|
Loading…
x
Reference in New Issue
Block a user