Lecture 3 - submerged surfaces

This commit is contained in:
Akbar Rahman 2021-10-20 11:27:23 +01:00
parent 0040607bb1
commit ee73b7cf2f
Signed by: alvierahman90
GPG Key ID: 20609519444A1269

View File

@ -243,3 +243,135 @@ p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
- If there is no flow along the tube, then - If there is no flow along the tube, then
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$ $$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
# Lecture 3 // Submerged Surfaces
## Prepatory Maths
### Integration as Summation
### Centroids
- For a 3D body, the centre of gravity is the point at which all the mass can be considered to act
- For a 2D lamina (thin, flat plate) the centroid is the centre of area, the point about which the
lamina would balance
To find the location of the centroid, take moments (of area) about a suitable reference axis:
$$moment\,of\,area = moment\,of\,mass$$
(making the assumption that the surface has a unit mass per unit area)
$$moment\,of\,mass = mass\times distance\,from\,point\,acting\,around$$
Take the following lamina:
![](./images/vimscrot-2021-10-20T10:01:30,080819382+01:00.png)
1. Split the lamina into elements parallel to the chosen axis
2. Each element has area $\delta A = w\delta y$
3. The moment of area ($\delta M$) of the element is $\delta Ay$
4. The sum of moments of all the elements is equal to the moment $M$ obtained by assuing all the
area is located at the centroid or:
$$Ay_c = \int_{area} \! y\,\mathrm{d}A$$
or:
$$y_c = \frac 1 A \int_{area} \! y\,\mathrm{d}A$$
- $\int y\,\mathrm{d}A$ is known as the first moment of area
<details>
<summary>
#### Example 1
Determine the location of the centroid of a rectangular lamina.
</summary>
##### Determining Location in $y$ direction
![](./images/vimscrot-2021-10-20T10:14:17,688774145+01:00.png)
1. Take moments for area about $OO$
$$\delta M = y\delta A = y(b\delta y)$$
2. Integrate to find all strips
$$M = b\int_0^d\! y \,\mathrm{d}y = b\left[\frac{y^2}2\right]_0^d = \frac{bd^2} 2$$
($b$ can be taken out the integral as it is constant in this example)
but also $$M = (area)(y_c) = bdy_c$$
so $$y_c = \frac 1 {bd} \frac {bd} 2 = \frac d 2$$
##### Determining Location in $x$ direction
![](./images/vimscrot-2021-10-20T10:24:48,372189101+01:00.png)
1. Take moments for area about $O'O'$:
$$\delta M = x\delta A = x(d\delta x)$$
2. Integrate
$$M_{O'O'} = d\int_0^b\! x \,\mathrm{d}x = d\left[\frac{x^2} 2\right]_0^b = \frac{db^2} 2$$
but also $$M_{O'O'} = (area)(x_c) = bdx_c$$
so $$x_c = \frac{db^2}{2bd} = \frac b 2$$
</details>
## Horizontal Submereged Surfaces
![](./images/vimscrot-2021-10-20T10:33:16,783724117+01:00.png)
Assumptions for horizontal lamina:
- Constant pressure acts over entire surface of lamina
- Centre of pressure will coincide with centre of area
- $total\,force = pressure\times area$
![](./images/vimscrot-2021-10-20T10:36:12,520683729+01:00.png)
## Vertical Submerged Surfaces
![](./images/vimscrot-2021-10-20T11:05:33,235642932+01:00.png)
- A vertical submerged plate does experience uniform pressure
- Centroid of pressure and area are not coincident
- Centroid of pressure is always below centroid of area for a vertical plate
- No shear forces, so all hydrostatic forces are perpendicular to lamina
![](./images/vimscrot-2021-10-20T11:07:52,929126609+01:00.png)
Force acting on small element:
\begin{align*}
\delta F &= p\delta A \\
&= \rho gh\delta A \\
&= \rho gh w\delta h
\end{align*}
Therefore total force is
$$F_p = \int_{area}\! \rho gh \,\mathrm{d}A = \int_{h_1}^{h_2}\! \rho ghw\,\mathrm{d}h$$
### Finding Line of Action of the Force
![](./images/vimscrot-2021-10-20T11:15:51,200869760+01:00.png)
\begin{align*}
\delta M_{OO} &= \delta Fh = (\rho gh\delta A)h \\
&= \rho gh^2\delta A = \rho gh^2w\delta h \\
\\
M_{OO} &= F_py_p = \int_{area}\! \rho gh^2 \,\mathrm{d}A \\
&= \int_{h1}^{h2}\! \rho gh^2w \,\mathrm{d}h \\
\\
y_p = \frac{M_{OO}}{F_p}
\end{align*}