Compare commits
3 Commits
274c643b09
...
572d86e60f
Author | SHA1 | Date | |
---|---|---|---|
572d86e60f
|
|||
7d9ad8cbf0
|
|||
7166aecc6f
|
60
uni/mmme/2053_mechanics_of_solids/elastic_instability.md
Executable file
60
uni/mmme/2053_mechanics_of_solids/elastic_instability.md
Executable file
@@ -0,0 +1,60 @@
|
|||||||
|
---
|
||||||
|
author: Akbar Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME2053 // Elastic Instability (Buckling)
|
||||||
|
tags: [ elastic_instability, buckling ]
|
||||||
|
uuid: b8b2cff7-8106-4968-bab5-f4cffcf8b5a0
|
||||||
|
lecture_slides: [ ./lecture_slides/MMME2053-EI L1 Slides.pdf, ./lecture_slides/MMME2053-EI L2 Slides.pdf ]
|
||||||
|
lecture_notes: [ ./lecture_notes/Elastic Instability (Buckling) Notes.pdf ]
|
||||||
|
exercise_sheets: [ ./exercise_sheets/Elastic Instability (Buckling) Exercise Sheet.pdf, ./exercise_sheets/Elastic Instability (Buckling) Exercise Sheet Solutions.pdf ]
|
||||||
|
worked_examples: [ ./worked_examples/MMME2053-EI WE1 Slides.pdf ]
|
||||||
|
---
|
||||||
|
|
||||||
|
# Notes from Lecture Slides (2)
|
||||||
|
|
||||||
|
> In contrast to the classical cases considered here, actual compression members are seldom truly pinned or
|
||||||
|
> completely fixed against rotation at the ends. Because of this uncertainty regarding the fixity of the ends,
|
||||||
|
> struts or columns are often assumed to be pin-ended. This procedure is conservative.
|
||||||
|
>
|
||||||
|
> The above equations are not applicable in the inelastic range, i.e. for $\sigma > \sigma_y$ , and must be modified.
|
||||||
|
>
|
||||||
|
> The critical load formulae for struts or columns are remarkable in that they do not contain any strength
|
||||||
|
> property of the material and yet they determine the load carrying capacity of the member. The only material
|
||||||
|
> property required is the elastic modulus, $E$, which is a measure of the stiffness of the strut.
|
||||||
|
|
||||||
|
# Stability of Equilibrium
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
# Critical Buckling Load on a Strut
|
||||||
|
|
||||||
|
Critical buckling load is given by:
|
||||||
|
|
||||||
|
$$P_c = \frac{\pi^2EI}{L_\text{eff}^2}$$
|
||||||
|
|
||||||
|
where $L_\text{eff}$ is the effective length:
|
||||||
|
|
||||||
|
- Free-fixed -> $L_\text{eff} = 2l$
|
||||||
|
- Hinged-hinged -> $L_\text{eff} = l$
|
||||||
|
- Fixed-hinged -> $L_\text{eff} = 0.7l$
|
||||||
|
- fixed-fixed -> $L_\text{eff} = 0.5l$
|
||||||
|
|
||||||
|
where $l = 0.5L$
|
||||||
|
|
||||||
|
Derivations detailed in lecture slides (1, pp. 8-21).
|
||||||
|
|
||||||
|
# Compression of Rods/Columns
|
||||||
|
|
||||||
|
Derivations detailed in lecture slides (2, pp. 3-5).
|
||||||
|
|
||||||
|
Buckling will occur if
|
||||||
|
|
||||||
|
$$\sigma = \frac{\pi^2E}{\frac{L^2}{K^2}}$$
|
||||||
|
|
||||||
|
where $k$ is the radius of gyration and $\frac{L}{K}$ is the slenderness ratio.
|
||||||
|
|
||||||
|
Plastic collapse will occur if $\sigma = \sigma_y$.
|
||||||
|
|
||||||
|
This can be represented diagrammatically:
|
||||||
|
|
||||||
|

|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 8.8 KiB |
BIN
uni/mmme/2053_mechanics_of_solids/images/perturbed.png
Normal file
BIN
uni/mmme/2053_mechanics_of_solids/images/perturbed.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 6.1 KiB |
Binary file not shown.
After Width: | Height: | Size: 74 KiB |
Binary file not shown.
After Width: | Height: | Size: 7.2 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
59
uni/mmme/2053_mechanics_of_solids/thick_walled_cylinders.md
Executable file
59
uni/mmme/2053_mechanics_of_solids/thick_walled_cylinders.md
Executable file
@@ -0,0 +1,59 @@
|
|||||||
|
---
|
||||||
|
author: Akbar Rahman
|
||||||
|
date: \today
|
||||||
|
title: MMME2053 // Thick Walled Cylinders
|
||||||
|
tags: [ thick_walled_cylinders ]
|
||||||
|
uuid: b53973dc-2c57-4e37-8409-96875125f4de
|
||||||
|
lecture_slides: [ ./lecture_slides/MMME2053_TC1_Intro.pdf, ./lecture_slides/MMME2053_TC2.pdf, ./lecture_slides/MMME2053_TC3.pdf ]
|
||||||
|
lecture_notes: [ ./lecture_notes/MMME2053_TC_Notes.pdf ]
|
||||||
|
exercise_sheets: [ ./exercise_sheets/Thick Cylinders Exercise Sheet.pdf, ./exercise_sheets/Thick Walled Cylinders Exercise Sheet Solutions.pdf ]
|
||||||
|
worked_examples: [ ./worked_examples/MMME2053_TC_WE1.pdf, ./worked_examples/MMME2053_TC_WE2.pdf, ./worked_examples/MMME2053_TC_WE3.pdf ]
|
||||||
|
---
|
||||||
|
|
||||||
|
# Lame's Equations
|
||||||
|
|
||||||
|
Derivation in lecture slides 2 (pp. 3-11)
|
||||||
|
|
||||||
|
$$\sigma_h = A + \frac{B}{r^2}$$
|
||||||
|
|
||||||
|
$$\sigma_r = A - \frac{B}{r^2}$$
|
||||||
|
|
||||||
|
where $A$ and $B$ are *Lame's constants* (constants of integration).
|
||||||
|
|
||||||
|
Note that $\sigma_r$ does not vary with radius, $r$.
|
||||||
|
|
||||||
|
## Obtaining Lame's Constants
|
||||||
|
|
||||||
|
The constants can be obtained by using the boundary conditions of the problem:
|
||||||
|
|
||||||
|
At the inner radius ($r = R_i$) the pressure is only opposing the fluid inside:
|
||||||
|
|
||||||
|
$$\sigma_r= -p_i$$
|
||||||
|
|
||||||
|
At the outer radius ($r = R_o$) the pressure is only opposing the fluid outside (e.g. atmospheric
|
||||||
|
pressure):
|
||||||
|
|
||||||
|
$$\sigma_r = -p_o$$
|
||||||
|
|
||||||
|
Therefore:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
-p_i &= C - \frac{D}{R_i^2}
|
||||||
|
-p_o &= C - \frac{D}{R_o^2}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
where $C$ and $D$ are constants which can be determined.
|
||||||
|
|
||||||
|
## Cylinder with Closed Ends
|
||||||
|
|
||||||
|
$$\sigma_z = \frac{R_i^2p_i - R_o^2p_o}{R_o^2-R_i^2}$$
|
||||||
|
|
||||||
|
## Cylinder with Pistons
|
||||||
|
|
||||||
|
No axial load is transferred to the cylinder.
|
||||||
|
|
||||||
|
$$\sigma_z = 0$$
|
||||||
|
|
||||||
|
## Solid Cylinder
|
||||||
|
|
||||||
|
$$\sigma_r = \sigma_\theta = A$$
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Reference in New Issue
Block a user