9.5 KiB
Executable File
author | date | title | tags | uuid | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Alvie Rahman | \today | MMME1026 // Complex Numbers |
|
b9be8780-1ab7-402f-9c67-8cc74a74f7a9 |
Complex Numbers
What is a Complex Number?
-
i
is the unit imaginary number, which is defined by:i^2 = -1
-
An arbritary complex number is written in the form
z = x + iy
Where:
x
is the real part ofz
(which you may seen written as\Re(z) = x
or Re$(z) = x$)y
is the imaginary part ofz
(which you may seen written as\Im(z) = y
or Im$(z) = y$)
-
Two complex numbers are equal if both their real and imaginary parts are equal
e.g. $$(3 + 4i) + (1 -2i) = (3+1) + i(4-2) = 2 + 2i$$
The Complex Conjugate
Given complex number z
:
z = x + iy
The complex conjugate of z, \bar z
is:
\bar{z} = x -iy
Division of Complex Numbers
- Multiply numerator and denominator by the conjugate of the denominator
Example
\begin{align*} z_1 &= 5 + i \ z_2 &= 1 -i \ \ \frac{z_1}{z_2} &= \frac{5+i}{1-i} \cdot \frac{\bar{z_2}}{\bar{z_2}} = \frac{(5+i)(1+i)}{(1-i)(1+i)} \ &= \frac{5 + i + 5i -1}{1 + 1} \ &= \frac{4 + 6i}{2} = 2 + 3i \end{align*}
Algebra and Conjugation
When taking complex conjugate of an algebraic expresion, we can replace i
by -i
before or after
doing the algebraic operations:
\begin{align*} \overline{z_1+z_2} &= \bar{z_1}+\bar{z_2} \ \overline{z_1z_2} &= \bar{z_1}\bar{z_2} \ \overline{z_1/z_2} &= \frac{\bar{z_1}}{\bar{z_2}} \end{align*}
The conjugate of a real number is the same as that number.
Application
If z
is a root of the polynomial equation
0 = az^2 + bz + c
with real coefficients a
, b
, and c
, then \bar{z}
is also a root because
\begin{align*} 0 &= \overline{az^2 + bz + c} \ &= \bar{a}\bar{z}^2 + \bar{b}\bar{z} + \bar{c} \ &= a\bar{z}^2 + b\bar{z} + c \end{align*}
The Argand Diagram
A general complex number z = x + iy
has two components so it can can be represented as a point in
the plane with Cartesion coordinates (x, y)
.
\begin{align*} 4-2i &\leftrightarrow (4, -2) \ -i &\leftrightarrow (0, -1) \ z &\leftrightarrow (x, y) \ \bar z &\leftrightarrow (x, -y) \end{align*}
Plotting on a Polar Graph
We can also describe points in the complex plain with polar coordinates (r, \theta)
:
\begin{align*} z &= r(\cos\theta + i\sin\theta) &\text{ polar form of $z$} \ r &= \sqrt{x^2+y^2} &\text{(modulus)}\ \theta &= \arg z,\text{ where} \tan \theta = \frac y x &\text{(argument)} \ x &= r\cos \theta \ y &= r\sin \theta \end{align*}
Be careful when turning (x, y)
into (r, \theta)
form as \tan^{-1} \frac y x = \theta
does not
always hold true as there are many solutions.
Choosing \theta
Correctly
- Determine which quadrant the point is in (draw a picture).
- Find a value of
\theta
such that\tan \theta = \frac y x
and check that it is consistent. If it puts you in the wrong quadrant, add or subtract\pi
.
Exponential Functions
-
The exponential function
f(x) = \exp x
may be wirtten as an infinite series:\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
-
The function
f(x) = e^{-x}
is just\frac 1 {e^x}
-
Note the important properties:
\begin{align*} e^{a+b} &= e^a e^b \ (e^a)^b &= e^{ab} \end{align*}
Euler's Formula
e^{i\theta} = \cos\theta + i\sin\theta
-
Properties of
e^{i\theta}
: For any real angle\theta
we have|e^{i\theta}| = |\cos\theta + i\sin\theta| = \sqrt{\cos^2\theta + \sin^2\theta} = 1
and
\arg {e^{i\theta}} = \theta
-
A complex number in polar form, where
r = |z|
, and\theta = \arg z
, may alternatively be written in its exponential form:z = re^{i\theta}
Note: $$\bar z = r\cos\theta - ir\sin\theta = re^{-i\theta}
Example 1
Write z = -1 + i
in exponential form
z = -1 + i
in exponential form$\arg z = \frac {3\pi} 4$
|z| = \sqrt 2
So
z = \sqrt2e^{i\frac{3\pi} 4}
Example 2
The equations for a mechanical vibration problem are found to have the following mathematical
solution:
z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}
z(t) = \frac{e^{i\omega t}}{\omega_0^2-\omega^2 + i\gamma}
where t
represents time and \omega
, \omega_0
and \gamma
are all positive real physical
constants.
Although $z(t)$
is complex and cannot directly represent a physical solution, it turns out that the real and
imaginary parts x(t)
and y(t)
in z(t) = x(t) + iy(t)
can. Polar notation can be used to extract
this physical information efficiently as follows:
a. Put the denominator in the form
$$ae^{i\del
where you should give explicit expressions for a
and \delta
in terms of \gamma
, \gamma_0
,
and \gamma
.
\begin{align*} a &= \sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2} \ \delta &= \tan^{-1}\frac \delta {\omega_0^2 - \omega^2} \end{align*}
b. Hence find the constants b
and \varphi
such that
$$x(t) = b\cos(\omega t + \varp
and write a similar expression for y(t)
.
\begin{align*} z &= \frac{e^i\omega t}{ae^{i\delta}} = \frac 1 a e^{i (\omega t - \delta)} \ x + iy &= \frac 1 a \cos(\omega t - \delta) + \frac 1 a \sin(\omega t - \delta) \ \therefore \Re z &= x = \frac 1 a \cos(\omega t - \delta), \ \Im z &= y = \frac 1 a \sin(\omega t - \delta) \ \ b &= \frac 1 a = \frac 1 {\sqrt{\gamma^2 + (\omega_0^2 - \omega^2)^2}} \ \varphi &= -\delta = \tan^{-1}\frac \delta {\omega_0^2 - \omega^2}\ \ y(t) &= \frac 1 a \sin(\omega t - \delta) \ \end{align*}
Products of Complex Numbers
Suppose we have 2 complex numbers:
z_1 = x_1 + iy_1 = r_1e^{i\theta_1}
z_2 = x_2 + iy_2 = r_2e^{i\theta_2}
Using e^a e^b = e^{a+b}
, the product is:
\begin{align*} z_3 = z_1 z_2 &= (r_1e^{i\theta_1})(r_2e^{i\theta_2}) \ &= r_1r_2e^{i\theta_1}e^{i\theta_2} \ &= r_1r_2e^{i(\theta_1+\theta_2)} \ \ |z_1z_2| &= |z_1|\times|z_2| \ \arg z_1z_2 &= \arg z_1 \times \arg z_2 \end{align*}
de Moivre's Theorem
Let z = re^{i\theta}
. Consider z^n
.
Since z = r(\cos\theta + i\sin\theta)
,
\begin{align*}
z^n &= r^n(\cos\theta + i\sin\theta)^n &\text{(1)} \
\end{align*}
But also
\begin{align*} z^n &= (re^{i\theta})^n \ &= r^n(e^{i\theta})^n \ &= r^ne^{in\theta} \ &= r^n(\cos{n\theta} + i\sin{n\theta}) &\text{(2)} \ \end{align*}
By equating (1) and (2), we find de Moivre's theorem:
\begin{align*} r^n(\cos\theta +i\sin\theta)^n &= r^n(\cos{n\theta} + i\sin{n\theta}) \ (\cos\theta +i\sin\theta)^n &= (\cos{n\theta} + i\sin{n\theta}) \end{align*}
Example 1
Write 1+i
in polar form and use de Moivre's theorem to calculate (1+i)^{15}
.
1+i
in polar form and use de Moivre's theorem to calculate (1+i)^{15}
.\begin{align*} r &= |1+i| = \sqrt2 \ \theta &= \arg{1+i} = \frac \pi 4 \ \ \text{So } 1 + i &= \sqrt2(\cos{\frac pi 4} + i\sin{\frac \pi 4}) = \sqrt2e^{i\frac \pi 4} \text{ and}\ (i+i)^{15} &= (\sqrt2)^{15}\left(\cos{\frac \pi 4} + i\sin{\frac \pi 4}\right)^{15} \ &= 2^{\frac 15 2} \left(\cos{\frac{15\pi} 4} + i\sin{\frac{15\pi} 4}\right) \ &= 2^{\frac 15 2} \left(\frac 1 {\sqrt2} - \frac i {\sqrt2}\right) \ &= 2^7 (1 - i) \ &= 128 - 128i \end{align*}
Example 2
Use de Moivre's theorem to show that
\begin{align*}
\cos{2\theta} &= \cos^2\theta-\sin^2\theta \
\text{and} \
\sin{2\theta} &= 2\sin\theta\cos\theta
\end{align*}
Let
n=2
:
\begin{align*} (\cos\theta+i\sin\theta)^2 &= \cos^2\theta + 2i\sin\theta\cos\theta - \sin^2\theta \ \text{Real part: } \cos^2\theta - \sin^2\theta &= \cos{2\theta}\ \text{Imaginary part: } 2\sin\theta\cos\theta &= \sin{2\theta} \end{align*}
Example 3
Given that n \in \mathbb{N}
and \omega = -1 + i
, show that
w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}
with Euler's formula.
n \in \mathbb{N}
and \omega = -1 + i
, show that
w^n + \bar{w}^n = 2^{\frac n 2 + 1}\cos{\frac{3n\pi} 4}
with Euler's formula.\begin{align*} r &= \sqrt{2} \ \arg \omega = \theta &= \frac 3 4 \pi \ \ \omega^n &= r^n(cos{n\theta} + i\sin{n\theta}) \ \bar\omega^n &= r^n(cos{n\theta} - i\sin{n\theta}) \ \omega^n + \bar\omega^n &= r^n(2\cos{n\theta}) \ &= 2^{\frac n 2 + 1}\cos{\frac {3n\pi} 4} \end{align*}
Complex Roots of Polynomials
Example
Find which complex numbers z
satisfy
z^3 = 8i
z
satisfyz^3 = 8i
Write
8i
in exponential form,
|8i| = 8
and\arg{8i} = \frac \pi 2
\therefore 8i = 8e^{i\frac \pi 2}
Let the solution be
r = re^{i\theta}
.Then
z^3 = r^3e^{3i\theta}
.
z^3 = r^3e^{3i\theta} = 8e^{i\frac \pi 2}
i. Compare modulus:
r^3 = 8 \rightarrow r = 2
ii. Compare argument:
$$3\theta = \frac \pi 2$$ is a solution but there are others since $$e^{i\frac \pi 2} = e^{i \frac \pi 2 + 2n\pi}$$ so we get a solution whenever $$3\theta = \frac \pi 2 + 2n\pi$$ for any integer `n` - $n = 0 \rightarrow z = \sqrt3 + i$ - $n = 1 \rightarrow z = -\sqrt3 + i$ - $n = 2 \rightarrow z = -2i$ - $n = 3 \rightarrow z = \sqrt3 + i$ - $n = 4 \rightarrow z = -\sqrt3 + i$ - The solutions start repeating as you can see In general, an $n$-th order polynomial has exactly $n$ complex roots. Some of these complex roots may be real numbers.
There are three solutions