16 KiB
Executable File
author | date | title | tags | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Alvie Rahman | \today | MMME1026 // Systems of Equations and Matrices |
|
Systems of Equations (Simultaneous Equations)
Gaussian Elimination
Gaussian eliminiation can be used when the number of unknown variables you have is equal to the number of equations you are given.
I'm pretty sure it's the name for the method you use to solve simultaneous equations in school.
For example if you have 1 equation and 1 unknown:
\begin{align*} 2x &= 6 \ x &= 3 \end{align*}
Number of Solutions
Let's generalise the example above to
ax = b
There are 3 possible cases:
\begin{align*} a \ne 0 &\rightarrow x = \frac b a \ a = 0, b \ne 0 &\rightarrow \text{no solution for $x$} \ a = 0, b = 0 &\rightarrow \text{infinite solutions for $x$} \end{align*}
2x2 Systems
A 2x2 system is one with 2 equations and 2 unknown variables.
Example 1
\begin{align*}
3x_1 + 4x_2 &= 2 &\text{(1)} \
x_1 + 2x_2 &= 0 &\text{(2)} \
\end{align*}
\begin{align*} 3\times\text{(2)} = 3x_1 + 6x_2 &= 0 &\text{(3)} \ \text{(3)} - \text{(1)} = 0x_1 + 2x_2 &= -2 \ x_2 &= -1 \end{align*}
We've essentially created a 1x1 system for x_2
and now that's solved we can back substitute it
into equation (1) (or equation (2), it doesn't matter) to work out the value of x_1
:
\begin{align*} 3x_1 + 4x_2 &= 2 \ 3x_1 - 1 &= 2 \ 3x_1 &= 6 \ x_1 &= 2 \end{align*}
You can check the values for x_1
and x_2
are correct by substituting them into equation (2).
3x3 Systems
A 3x3 system is one with 3 equations and 3 unknown variables.
Example 1
\begin{align*}
2x_1 + 3x_2 - x_3 &= 5 &\text{(1)} \
4x_1 + 4x_2 - 3x_3 &= 5 &\text{(2)} \
2x_1 - 3x_2 + x_3 &= 5 &\text{(3)} \
\end{align*}
The first step is to eliminate x_1
from (2) and (3) using (1):
\begin{align*} \text{(2)}-2\times\text{(1)} = -2x_2 -x_3 &= -1 &\text{(4)} \ \text{(3)}-\text{(1)} = -6x_2 + 3x_3 &= -6 &\text{(5)} \ \end{align*}
This has created a 2x2 system of x_2
and x_3
which can be solved as any other 2x2 system.
I'm too lazy to type up the working, but it is solved like any other 2x2 system.
\begin{align*} x_2 &= -2 x_3 &= 5 \end{align*}
These values can be back-substituted into any of the first 3 equations to find out x_1
:
\begin{align*} -2x_1 + 3x_2 - x_3 = 2x_1 + 6 - 3 = 5 \rightarrow x_1 = 1 \end{align*}
Example 2
\begin{align*}
x_1 + x_2 - 2x_3 &= 1 &R_1 \
2x_1 - x_2 - x_3 &= 1 &R_2 \
x_1 + 4x_2 + 7x_3 &= 2 &R_3 \
\end{align*}
-
Eliminate
x_1
fromR_2
,R_3
:\begin{align*} x_1 + x_2 - 2x_3 &= 1 &R_1' = R_1\
- 3x_2 - 5x_3 &= -1 &R_2' = R_2 - 2R_1 \ 3x_2 + 5x_3 &= 1 &R_3' = R_3 - R_1 \ \end{align*}
We've created another 2x2 system of
R_2'
andR_3'
-
Eliminate
x_2
fromR_3''
\begin{align*} x_1 + x_2 - 2x_3 &= 1 &R_1'' = R_1' = R_1\
- 3x_2 - 5x_3 &= -1 &R_2'' = R_2' = R_2 - 2R_1 \ 0x_3 &= 0 &R_3'' = R_3 '+ R_2' \ \end{align*}
We can see that
x_3
can be any number, so there are infinite solutions. Let:x_3 = t
where
t
can be any number -
Substitute
x_3
intoR_2''
:R_2'' = -3x_2 - 5t = -1 \rightarrow x_2 = \frac 1 3 - \frac{5t} 3
-
Substitute
x_2
andx_3
intoR_1''
:R_1'' = x_1 + \frac 1 3 - \frac{5t} 3 + 2t = 1 \rightarrow x_1 = \frac 2 3 - \frac t 3
Systems of Equations and Matrices
Many problems in engineering have a very large number of unknowns and equations to solve simultaneously. We can use matrices to solve these efficiently.
Take the following simultaneous equations::
\begin{align*} 3x_1 + 4x_2 &= 2 &\text{(1)} \ x_1 + 2x_2 &= 0 &\text{(2)} \end{align*}
They can be represented by the following matrices:
\begin{align*} A &= \begin{pmatrix} 3 & 4 \ 1 & 2 \end{pmatrix} \ \pmb x &= \begin{pmatrix} x_1 \ x_2 \end{pmatrix} \ \pmb b &= \begin{pmatrix} 2 \ 0 \end{pmatrix} \ \end{align*}
You can then express the system as:
A\pmb x = \pmb b
A 3x3 System as a Matrix
\begin{align*} 2x_1 + 3x_2 - x_3 &= 5 \ 4x_1 + 4x_2 - 3x_3 &= 3 \ 2x_1 - 3x_2 + x_3 &= -1 \end{align*}
Could be expressed in the form A\pmb x = \pmb b
where:
\begin{align*} A &= \begin{pmatrix} 2 & 3 & -1 \ 4 & 4 & -3 \ 2 & -3 & -1 \end{pmatrix} \ \pmb x &= \begin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} \ \pmb b &= \begin{pmatrix} 5 \ 3 \ -1 \end{pmatrix} \ \end{align*}
An m\times n
System as a Matrix
m\times n
System as a Matrix\begin{align*} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \ \cdots \ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m \ \end{align*}
Could be expressed in the form A\pmb x = \pmb b
where:
\begin{align*} A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \vdots & & & \vdots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \pmb x = \begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix}, \pmb b = \begin{pmatrix} b_1 \ b_2 \ \vdots \ b_m \end{pmatrix} \end{align*}
Matrices
Order of a Matrix
The order of a matrix is its size e.g. 3\times2
or m\times n
Column Vectors
-
Column vectors are matrices with only one column:
\begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 45 \\ 12 \end{pmatrix}
-
Column vector variables typed up or printed are expressed in
\pmb{bold}
and when it is handwritten it is \underline{underlined}:\pmb x = \begin{pmatrix} -3 \\ 2 \end{pmatrix}
Matrix Algebra
Equality
Two matrices are the same if:
- Their order is the same
- Their corresponding elements are the same
Addition and Subtraction
Only possible if their order is the same. \begin{align*} A + B&= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \ \vdots & & & \vdots \ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix} \ A - B&= \begin{pmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \ a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \ \vdots & & & \vdots \ a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn} \end{pmatrix}, \end{align*}
Zero Matrix
This is a matrix whose elements are all zeros.
For any matrix A
,
A + 0 =A
We can only add matrices of the same order, therefore 0 must be of the same order as A
.
Multiplication
Let
\begin{matrix}
A & m\times n \\
B & p\times q
\end{matrix}
To be able to multiply A
by B
, n = p
.
If n \ne p
, then AB
does not exist.
\begin{matrix}
A & B & = & C \\
m\times n & p \times q & & m\times q
\end{matrix}
When C = AB
exists,
C_{ij} = \sum_r\! a_{ir}b_{rj}
That is, C_{ij}
is the 'product' of the $i$th row of A
and $j$th column of B
.
Multiplication of a Matrix by a Scalar
If \lambda
is a scalar, we define
\lambda a = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\
\vdots & & & \vdots \\
\lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn}
\end{pmatrix},
Example 1
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} =
\begin{pmatrix} -3 & -1 \\ 3 & 4 \end{pmatrix}
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} =
\begin{pmatrix} 2 & 1 \\ 7 & -1 \end{pmatrix}
Example 2
A = \begin{pmatrix} 4 & 1 & 6 \\ 3 & 2 & 1 \end{pmatrix},\,
B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}
AB = \begin{pmatrix} 11 & 6 \\ 6 & 7 \end{pmatrix},\,
BA = \begin{pmatrix} 7 & 3 & 7 \\ 10 & 5 & 8 \\ 4 & 1 & 6 \end{pmatrix}
Other Properties of Matrix Algebra
-
(\lambda A)B = \lambda(AB) = A(\lambda B)
-
A(BC) = (AB)C = ABC
-
(A+B)C = AC + BC
-
C(A+B) = CA + CB
-
In general,
AB \ne BA
even if both exist -
AB = 0
does not always meanA = 0
orB = 0
:$$\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \begin{pmatrix}3 & 0 \ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix} = 0$$
It follows that
AB = AC
does not imply thatB=C
asAB = AC \leftrightarrow A(B + C) = 0
and as
A
and(B-C)
are not necessarily 0,B
is not necessarily equal toC
:$$AB = \begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \begin{pmatrix}0 & 0 \ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$$
and
$$AC = \begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \begin{pmatrix}1 & 2 \ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} = AB$$
but
B \ne C
Special Matrices
Square Matrix
Where m = n
Example 1
A 3\times3
matrix.
3\times3
matrix.\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}
Example 2
A 2\times2
matrix.
2\times2
matrix.\begin{pmatrix}1 & 2 \\ 4 & 5 \end{pmatrix}
Identity Matrix
The identity matrix is a square matrix whose eleements are all 0, except the leading diagonal which is 1s. The leading diagonal is the top left to bottom right corner.
It is usually denoted by I
or I_n
.
The identity matrix has the properties that
AI = IA = A
for any square matrix A
of the same order as I, and
Ix = x
for any vector x
.
Example 1
The 3\times3
identity matrix.
3\times3
identity matrix.\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}
Example 2
The 2\times2
identity matrix.
2\times2
identity matrix.\begin{pmatrix}1 & 0 \\ 0 & 1 \end{pmatrix}
Transposed Matrix
The transpose of matrix A
of order m\times n
is matrix A^T
which has the order n\times m
.
It is found by reflecting it along the leading diagonal, or interchanging the rows and columns of
A
.
Let matrix D = EF
, then D^T = (EF)^T = E^TF^T
Example 1
A = \begin{pmatrix}3 & 2 & 1 \\ 4 & 5 & 6 \end{pmatrix},\,
A^T = \begin{pmatrix}3 & 4 \\ 2 & 5 \\ 1 & 6\end{pmatrix}
Example 2
B = \begin{pmatrix}1 \\ 4\end{pmatrix},\,
B^T = \begin{pmatrix}1 & 4\end{pmatrix}
Example 3
C = \begin{pmatrix}1 & 2 & 3 \\ 0 & 5 & 1 \\ 2 & 3 & 7\end{pmatrix},\,
C^T = \begin{pmatrix}1 & 0 & 2 \\ 2 & 5 & 4 \\ 3 & 1 & 7\end{pmatrix}
Orthogonal Matrices
A matrix, A
, such that
A^{-1} = A^T
is said to be orthogonal.
Another way to say this is
AA^T = A^TA = I
Symmetric Matrices
A square matrix which is symmetric about its leading diagonal:
A = A^T
You can also express this as the matrix A
, where
a_{ij} = a_{ji}
is satisfied to all elements.
Example 1
$$\begin{pmatrix} 1 & 0 & -1 & 3 \ 0 & 3 & 4 & -1 \ -2 & 4 & -1 & 6 \ 3 & -7 & 6 & 2 \end{pmatrix}$$
Anti-Symmetric
A square matrix is anti-symmetric if
A = -A^T
This can also be expressed as
a_{ij} = -a_{ji}
This means that all elements on the leading diagonal must be 0.
Example 1
$$\begin{pmatrix} 0 & -1 & 5 \ 1 & 0 & 1 \ -5 & -1 & 0 \end{pmatrix}$$
The Determinant
Determinant of a 2x2 System
The determinant of a 2x2
system is
D = a_{11}a_{22} - a_{12}a_{21}
It is denoted by
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix}
\text{ or }
\det
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
-
A system of equations has a unique solution if
D \ne 0
-
If
D = 0
, then there are either- no solutions (the equations are inconsistent)
- intinitely many solutions
Determinant of a 3x3 System
Let
A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{align*} \det A = &a_{11} \times \det \begin{pmatrix}a_{22} & a_{23} \ a_{32} & a_{33} \end{pmatrix} \ &-a_{12} \times \det \begin{pmatrix}a_{21} & a_{23} \ a_{31} & a_{33} \end{pmatrix} \ &+a_{13} \times \det \begin{pmatrix}a_{21} & a_{22} \ a_{31} & a_{32} \end{pmatrix} \end{align*}
The 2x2
matrices above are created by removing any elements on the same row or column as its corresponding
coefficient:
Chessboard Determinant
\det A
may be obtained by expanding out any row or column.
To figure out which coefficients should be subtracted and which ones added use the chessboard
pattern of signs:
\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}
Properties of Determinants
-
\det A = \det A^T
-
If all elements of one row of a matrix are multiplied by a constant
z
, the determinant of the new matrix isz
times the determinant of the original matrix:\begin{align*} \begin{vmatrix} za & zb \ c & d \end{vmatrix} &= zad - zbc \ &= z(ad-bc) \ &= z\begin{vmatrix} a & b \ c & d \end{vmatrix} \end{align*}
This is also true if a column of a matrix is mutiplied by a constant.
Application if the fator
z
appears in each elements of a row or column of a determinant it can be factored out$$\begin{vmatrix}2 & 12 \ 1 & 3 \end{vmatrix} = 2\begin{vmatrix}1 & 6 \ 1 & 3 \end{vmatrix} = 2 \times 3 \begin{vmatrix} 1 & 2 \ 1 & 1 \end{vmatrix}$$
Application if all elements in one row or column of a matrix are zero, the value of the determinant is 0.
\begin{vmatrix} 0 & 0 \\ c & d \end{vmatrix} = 0\times d - 0\times c = 0
Application if
A
is ann\times n
matrix,\det(zA) = z^n\det A
-
Swapping any two rows or columns of a matrix changes the sign of the determinant
\begin{align*} \begin{vmatrix} c & d \ a & b \end{vmatrix} &= cb - ad \ &= -(ad - bc) \ &= -\begin{vmatrix} a & b \ c & d \end{vmatrix} \end{align*}
Application If any two rows or two columns are identical, the determinant is zero.
Application If any row is a mutiple of another, or a column a multiple of another column, the determinant is zero.
-
The value of a determinant is unchanged by adding to any row a constant multiple of another row, or adding to any column a constant multiple of another column
-
If
A
andB
are square matrices of the same order then\det(AB) = \det A \times \det B
Inverse of a Matrix
If A
is a square matrix, then its inverse matrix is A^{-1}
and is defined by the property that:
A^{-1}A = AA^{-1} = I
-
Not every matrix has an inverse
-
If the inverse exists, then it is very useful for solving systems of equations:
\begin{align*} A\pmb{x} = \pmb b \rightarrow A^{-1}A\pmb x &= A^{-1}\pmb b \ I\pmb x &= A^{-1}\pmb b \ \pmb x &= A^{-1}\pmb b \end{align*}
Therefore there must be a unique solution to
A\pmb x = \pmb b
:\pmb x = A^{-1}\pmb b
. -
If
D = EF
thenD^-1 = (EF)^{-1} = F^{-1}E^{-1}
Inverse of a 2x2 Matrix
If A
is the 2x2
matrix
A = \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
and its determinant, D
, satisfies D \ne 0
, A
has the inverse A^{-1}
given by
A^{-1} = \frac 1 D \begin{pmatrix}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{pmatrix}
If D = 0
, then matrix A
has no inverse.
Example 1
Find the inverse of matrix A = \begin{pmatrix} -1 & 5 \\ 2 & 3 \end{pmatrix}
.
A = \begin{pmatrix} -1 & 5 \\ 2 & 3 \end{pmatrix}
.-
Calculate the determinant
\det A = -1 \times 3 - 5 \times 2 = -13
Since
\det A \ne 0
, the inverse exists. -
Calculate
A^{-1}
A^{-1} = \frac 1 {-13} \begin{pmatrix} 3 & -5 \\ -2 & -1\end{pmatrix}