add notes on piezoelectrics
This commit is contained in:
parent
73d39c8744
commit
b2ff21cd12
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 66 KiB |
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
Binary file not shown.
After Width: | Height: | Size: 38 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
66
uni/mmme/2051_electromechanical_devices/piezoelectrics.md
Executable file
66
uni/mmme/2051_electromechanical_devices/piezoelectrics.md
Executable file
@ -0,0 +1,66 @@
|
||||
---
|
||||
author: Akbar Rahman
|
||||
date: \today
|
||||
title: MMME2051 // Piezoelectrics
|
||||
tags: [ piezoelectrics, op_amps ]
|
||||
uuid: ed7d0899-478d-4f0d-b0e9-634cdbb5b48a
|
||||
lecture_slides: [ ./lecture_slides/MMME2051EMD_Lecture7.pdf ]
|
||||
lecture_notes: []
|
||||
exercise_sheets: [ ./seminar_worksheets/MMME2051_Lec7_Top1_Quiz.pdf, ./seminar_worksheets/StrainGaugeHomework.pdf ]
|
||||
---
|
||||
|
||||
Piezoelectricity is the charge that gets accumulated in some materials upon application of
|
||||
mechanical stress
|
||||
|
||||
$$Q \propto F$$
|
||||
|
||||
This relation allows the measurement of force using electric signals.
|
||||
|
||||
![](./images/vimscrot-2023-03-16T11:15:41,326771312+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
Q &\propto F \\
|
||||
Q &= k_1F \\
|
||||
&= k_1Ma \\
|
||||
\frac{\mathrm d Q}{\mathrm dt} &= i = k_1M\frac{\mathrm da}{\mathrm dt}
|
||||
\end{align*}
|
||||
|
||||
# Integrating Amplifier
|
||||
|
||||
Measuring current is expensive and difficult.
|
||||
Integrating the current helps to measure a voltage instead, which is easier.
|
||||
This is done using the following amplifier:
|
||||
|
||||
![](./images/vimscrot-2023-03-16T11:22:04,554599428+00:00.png)
|
||||
|
||||
\begin{align*}
|
||||
V_\text{out} &= A_{OL}(V^+-V__) = -A_{OL}V__ \\
|
||||
V__ &= V_\text{out} - V_C
|
||||
\end{align*}
|
||||
|
||||
As input resistance of op amp is infinite:
|
||||
|
||||
$$i_f = -i_n = -k_1M\frac{\mathrm da}{\mathrm dt}$$
|
||||
|
||||
From the capacitor equation:
|
||||
|
||||
$$i_f = C_f \frac{\mathrm dV_C}{\mathrm dt} = -k_1M\frac{\mathrm da}{\mathrm dt}$$
|
||||
|
||||
Integrating both sides gives
|
||||
|
||||
$$V_C = -\frac{k_1M}{C_f}a$$
|
||||
|
||||
And it can be found that
|
||||
|
||||
\begin{align*}
|
||||
V_\text{out} &= -A_{OL}(V_\text{out} - V_C) \\
|
||||
V_C &= -V\text{out} \frac{1+A_\text{OL}}{A_{OL}}
|
||||
\end{align*}
|
||||
|
||||
To get
|
||||
|
||||
$$V_\text{out} = \frac{k_1M}{C_f}a$$
|
||||
|
||||
This circuit can be stacked to get velocity and displacement:
|
||||
|
||||
![](./images/vimscrot-2023-03-16T11:28:48,428685773+00:00.png)
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user