Compare commits

...

2 Commits

Author SHA1 Message Date
8a059f5a8e Finish writing up notes on matrices lecture 1 2021-10-20 12:47:29 +01:00
ee73b7cf2f Lecture 3 - submerged surfaces 2021-10-20 11:27:23 +01:00
2 changed files with 423 additions and 4 deletions

View File

@@ -124,7 +124,7 @@ always hold true as there are many solutions.
- The exponential function $f(x) = \exp x$ may be wirtten as an infinite series:
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ... $$
$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $$
- The function $f(x) = e^{-x}$ is just $\frac 1 {e^x}$
- Note the important properties:
@@ -391,7 +391,7 @@ $$z^3 = 8i$$
</details>
# Matrices (and Simultaneous Equations)
# Systems of Equations (Simultaneous Equations)
## Gaussian Elimination
@@ -421,7 +421,7 @@ a = 0, b \ne 0 &\rightarrow \text{no solution for $x$} \\
a = 0, b = 0 &\rightarrow \text{infinite solutions for $x$}
\end{align*}
### 2x2 System
### 2x2 Systems
A 2x2 system is one with 2 equations and 2 unknown variables.
@@ -457,7 +457,7 @@ You can check the values for $x_1$ and $x_2$ are correct by substituting them in
</details>
### 3x3 System
### 3x3 Systems
A 3x3 system is one with 3 equations and 3 unknown variables.
@@ -496,3 +496,290 @@ These values can be back-substituted into any of the first 3 equations to find o
\end{align*}
</details>
<details>
<summary>
#### Example 2
\begin{align*}
x_1 + x_2 - 2x_3 &= 1 &R_1 \\
2x_1 - x_2 - x_3 &= 1 &R_2 \\
x_1 + 4x_2 + 7x_3 &= 2 &R_3 \\
\end{align*}
</summary>
1. Eliminate $x_1$ from $R_2$, $R_3$:
\begin{align*}
x_1 + x_2 - 2x_3 &= 1 &R_1' = R_1\\
- 3x_2 - 5x_3 &= -1 &R_2' = R_2 - 2R_1 \\
3x_2 + 5x_3 &= 1 &R_3' = R_3 - R_1 \\
\end{align*}
We've created another 2x2 system of $R_2'$ and $R_3'$
2. Eliminate $x_2$ from $R_3''$
\begin{align*}
x_1 + x_2 - 2x_3 &= 1 &R_1'' = R_1' = R_1\\
- 3x_2 - 5x_3 &= -1 &R_2'' = R_2' = R_2 - 2R_1 \\
0x_3 &= 0 &R_3'' = R_3 '+ R_2' \\
\end{align*}
We can see that $x_3$ can be any number, so there are infinite solutions. Let:
$$x_3 = t$$
where $t$ can be any number
3. Substitute $x_3$ into $R_2''$:
$$R_2'' = -3x_2 - 5t = -1 \rightarrow x_2 = \frac 1 3 - \frac{5t} 3$$
4. Substitute $x_2$ and $x_3$ into $R_1''$:
$$R_1'' = x_1 + \frac 1 3 - \frac{5t} 3 + 2t = 1 \rightarrow x_1 = \frac 2 3 - \frac t 3$$
</details>
## Systems of Equations and Matrices
Many problems in engineering have a very large number of unknowns and equations to solve
simultaneously.
We can use matrices to solve these efficiently.
Take the following simultaneous equations::
\begin{align*}
3x_1 + 4x_2 &= 2 &\text{(1)} \\
x_1 + 2x_2 &= 0 &\text{(2)}
\end{align*}
They can be represented by the following matrices:
\begin{align*}
A &= \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \\
\pmb x &= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\
\pmb b &= \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\
\end{align*}
You can then express the system as:
$$A\pmb x = \pmb b$$
<details>
<summary>
#### A 3x3 System as a Matrix
</summary>
\begin{align*}
2x_1 + 3x_2 - x_3 &= 5 \\
4x_1 + 4x_2 - 3x_3 &= 3 \\
2x_1 - 3x_2 + x_3 &= -1
\end{align*}
Could be expressed in the form $A\pmb x = \pmb b$ where:
\begin{align*}
A &= \begin{pmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ 2 & -3 & -1 \end{pmatrix} \\
\pmb x &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\
\pmb b &= \begin{pmatrix} 5 \\ 3 \\ -1 \end{pmatrix} \\
\end{align*}
</details>
<details>
<summary>
#### An $m\times n$ System as a Matrix
</summary>
\begin{align*}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
\cdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m \\
\end{align*}
Could be expressed in the form $A\pmb x = \pmb b$ where:
\begin{align*}
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix},
\pmb x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},
\pmb b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}
\end{align*}
</details>
# Matrices
## Order of a Matrix
The order of a matrix is its size e.g. $3\times2$ or $m\times n$
## Column Vectors
- Column vectors are matrices with only one column:
$$ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 45 \\ 12 \end{pmatrix} $$
- Column vector variables typed up or printed are expressed in $\pmb{bold}$ and when it is
handwritten it is \underline{underlined}:
$$ \pmb x = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
## Matrix Algebra
### Equality
Two matrices are the same if:
- Their order is the same
- Their corresponding elements are the same
### Addition and Subtraction
Only possible if their order is the same.
\begin{align*}
A + B&= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
\vdots & & & \vdots \\
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn}
\end{pmatrix} \\
A - B&= \begin{pmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \cdots & a_{1n} - b_{1n} \\
a_{21} - b_{21} & a_{22} - b_{22} & \cdots & a_{2n} - b_{2n} \\
\vdots & & & \vdots \\
a_{m1} - b_{m1} & a_{m2} - b_{m2} & \cdots & a_{mn} - b_{mn}
\end{pmatrix},
\end{align*}
### Zero Matrix
This is a matrix whose elements are all zeros.
For any matrix $A$,
$$A + 0 =A$$
We can only add matrices of the same order, therefore 0 must be of the same order as $A$.
### Multiplication
Let
$$
\begin{matrix}
A & m\times n \\
B & p\times q
\end{matrix}
$$
To be able to multiply $A$ by $B$, $n = p$.
If $n \ne p$, then $AB$ does not exist.
$$
\begin{matrix}
A & B & = & C \\
m\times n & p \times q & & m\times q
\end{matrix}
$$
When $C = AB$ exists,
$$C_{ij} = \sum_r\! a_{ir}b_{rj}$$
That is, $C_{ij}$ is the 'product' of the $i$th row of $A$ and $j$th column of $B$.
#### Multiplication of a Matrix by a Scalar
If $\lambda$ is a scalar, we define
$$
\lambda a = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\
\vdots & & & \vdots \\
\lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn}
\end{pmatrix},
$$
<details>
<summary>
#### Example 1
</summary>
$$
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} =
\begin{pmatrix} -3 & -1 \\ 3 & 4 \end{pmatrix}
$$
$$
\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}
\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} =
\begin{pmatrix} 2 & 1 \\ 7 & -1 \end{pmatrix}
$$
</details>
<details>
<summary>
#### Example 2
</summary>
$$
A = \begin{pmatrix} 4 & 1 & 6 \\ 3 & 2 & 1 \end{pmatrix},\,
B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}
$$
$$
AB = \begin{pmatrix} 11 & 6 \\ 6 & 7 \end{pmatrix},\,
BA = \begin{pmatrix} 7 & 3 & 7 \\ 10 & 5 & 8 \\ 4 & 1 & 6 \end{pmatrix}
$$
</details>
### Other Properties of Matrix Algebra
- $(\lambda A)B = \lambda(AB) = A(\lambda B)$
- $A(BC) = (AB)C = ABC$
- $(A+B)C = AC + BC$
- $C(A+B) = CA + CB$
- In general, $AB \ne BA$ even if both exist
- $AB = 0$ does not always mean $A = 0$ or $B = 0$:
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}3 & 0 \\ 0 & 0 \end{pmatrix} =
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$
<details>
<summary>
It follows that $AB = AC$ does not imply that $B=C$ as
$$AB = AC \leftrightarrow A(B + C) = 0$$
and as $A$ and $(B-C)$ are not necessarily 0, $B$ is not necessarily equal to $C$:
</summary>
$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}0 & 0 \\ 1 & 0 \end{pmatrix} =
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
and
$$AC = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix}1 & 2 \\ 1 & 0 \end{pmatrix} =
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = AB$$
but $B \ne C$
</details>

View File

@@ -243,3 +243,135 @@ p_1 - p_2 &= \rho_wg(z_C-z_B-z_C+z_A) + \rho_mg\Delta z \\
- If there is no flow along the tube, then
$$p_1 = p_2 + \rho_wg(z_{C2} - z_{C1})$$
# Lecture 3 // Submerged Surfaces
## Prepatory Maths
### Integration as Summation
### Centroids
- For a 3D body, the centre of gravity is the point at which all the mass can be considered to act
- For a 2D lamina (thin, flat plate) the centroid is the centre of area, the point about which the
lamina would balance
To find the location of the centroid, take moments (of area) about a suitable reference axis:
$$moment\,of\,area = moment\,of\,mass$$
(making the assumption that the surface has a unit mass per unit area)
$$moment\,of\,mass = mass\times distance\,from\,point\,acting\,around$$
Take the following lamina:
![](./images/vimscrot-2021-10-20T10:01:30,080819382+01:00.png)
1. Split the lamina into elements parallel to the chosen axis
2. Each element has area $\delta A = w\delta y$
3. The moment of area ($\delta M$) of the element is $\delta Ay$
4. The sum of moments of all the elements is equal to the moment $M$ obtained by assuing all the
area is located at the centroid or:
$$Ay_c = \int_{area} \! y\,\mathrm{d}A$$
or:
$$y_c = \frac 1 A \int_{area} \! y\,\mathrm{d}A$$
- $\int y\,\mathrm{d}A$ is known as the first moment of area
<details>
<summary>
#### Example 1
Determine the location of the centroid of a rectangular lamina.
</summary>
##### Determining Location in $y$ direction
![](./images/vimscrot-2021-10-20T10:14:17,688774145+01:00.png)
1. Take moments for area about $OO$
$$\delta M = y\delta A = y(b\delta y)$$
2. Integrate to find all strips
$$M = b\int_0^d\! y \,\mathrm{d}y = b\left[\frac{y^2}2\right]_0^d = \frac{bd^2} 2$$
($b$ can be taken out the integral as it is constant in this example)
but also $$M = (area)(y_c) = bdy_c$$
so $$y_c = \frac 1 {bd} \frac {bd} 2 = \frac d 2$$
##### Determining Location in $x$ direction
![](./images/vimscrot-2021-10-20T10:24:48,372189101+01:00.png)
1. Take moments for area about $O'O'$:
$$\delta M = x\delta A = x(d\delta x)$$
2. Integrate
$$M_{O'O'} = d\int_0^b\! x \,\mathrm{d}x = d\left[\frac{x^2} 2\right]_0^b = \frac{db^2} 2$$
but also $$M_{O'O'} = (area)(x_c) = bdx_c$$
so $$x_c = \frac{db^2}{2bd} = \frac b 2$$
</details>
## Horizontal Submereged Surfaces
![](./images/vimscrot-2021-10-20T10:33:16,783724117+01:00.png)
Assumptions for horizontal lamina:
- Constant pressure acts over entire surface of lamina
- Centre of pressure will coincide with centre of area
- $total\,force = pressure\times area$
![](./images/vimscrot-2021-10-20T10:36:12,520683729+01:00.png)
## Vertical Submerged Surfaces
![](./images/vimscrot-2021-10-20T11:05:33,235642932+01:00.png)
- A vertical submerged plate does experience uniform pressure
- Centroid of pressure and area are not coincident
- Centroid of pressure is always below centroid of area for a vertical plate
- No shear forces, so all hydrostatic forces are perpendicular to lamina
![](./images/vimscrot-2021-10-20T11:07:52,929126609+01:00.png)
Force acting on small element:
\begin{align*}
\delta F &= p\delta A \\
&= \rho gh\delta A \\
&= \rho gh w\delta h
\end{align*}
Therefore total force is
$$F_p = \int_{area}\! \rho gh \,\mathrm{d}A = \int_{h_1}^{h_2}\! \rho ghw\,\mathrm{d}h$$
### Finding Line of Action of the Force
![](./images/vimscrot-2021-10-20T11:15:51,200869760+01:00.png)
\begin{align*}
\delta M_{OO} &= \delta Fh = (\rho gh\delta A)h \\
&= \rho gh^2\delta A = \rho gh^2w\delta h \\
\\
M_{OO} &= F_py_p = \int_{area}\! \rho gh^2 \,\mathrm{d}A \\
&= \int_{h1}^{h2}\! \rho gh^2w \,\mathrm{d}h \\
\\
y_p = \frac{M_{OO}}{F_p}
\end{align*}