1.7 KiB
Executable File
author | date | title | tags | uuid | lecture_slides | lecture_notes | exercise_sheets | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Akbar Rahman | \today | MMME2051 // Piezoelectrics |
|
ed7d0899-478d-4f0d-b0e9-634cdbb5b48a |
|
|
Piezoelectricity is the charge that gets accumulated in some materials upon application of mechanical stress
Q \propto F
This relation allows the measurement of force using electric signals.
\begin{align*} Q &\propto F \ Q &= k_1F \ &= k_1Ma \ \frac{\mathrm d Q}{\mathrm dt} &= i = k_1M\frac{\mathrm da}{\mathrm dt} \end{align*}
Integrating Amplifier
Measuring current is expensive and difficult. Integrating the current helps to measure a voltage instead, which is easier. This is done using the following amplifier:
\begin{align*} V_\text{out} &= A_{OL}(V^+-V__) = -A_{OL}V__ \ V__ &= V_\text{out} - V_C \end{align*}
As input resistance of op amp is infinite:
i_f = -i_n = -k_1M\frac{\mathrm da}{\mathrm dt}
From the capacitor equation:
i_f = C_f \frac{\mathrm dV_C}{\mathrm dt} = -k_1M\frac{\mathrm da}{\mathrm dt}
Integrating both sides gives
V_C = -\frac{k_1M}{C_f}a
And it can be found that
\begin{align*} V_\text{out} &= -A_{OL}(V_\text{out} - V_C) \ V_C &= -V\text{out} \frac{1+A_\text{OL}}{A_{OL}} \end{align*}
To get
V_\text{out} = \frac{k_1M}{C_f}a
This circuit can be stacked to get velocity and displacement: