* New keyboard added
Zen is a split ortholinear currently in group buy.
* remove bad keymap
Keymap was throwing errors
* remove other bad keymap
I should have checked these before haha
* small fix to update folder name
* renamed temp
* renamed to zen
* update folder name
* Slim down matrix code
Suggested by drashna
* move KC_NO
* Update keymap
* change from rev2 to rev1
* Planck-swapped up/down arrows,s65x-add dvorak
* Added Dvorak as first layer of default keymap
* planck-swap up and down arrows. s65x-added dvorak
* added colemak to kelorean s65x keymap
* made more changes to kelorean keymap
* just tryinng to fix bc i was not connected upstrem
* Planck-swapped up/down arrows,s65x-add dvorak
* Added Dvorak as first layer of default keymap
* planck-swap up and down arrows. s65x-added dvorak
* added colemak to kelorean s65x keymap
* Change tapping term to be longer
* Make Audio/Underglow settings permanent
* Use wait_ms rather than _delay_ms
* Readd One Shot Mods
* Switch to Imperial March startup sound
* Move OSM to it's own layer
* Minor Formatting Tweaks
* Keymap Templates and formatting fixes
* added jirgn keymap from dotfiles
* added jirgn s keymap as copy from default
* [TASK] removed unnecessary colemak and dvorak layouts
* [TASK] added right shift with tab to enter
* [TASK] added ctrl keys beside homerow
* [TASK] added Navigation Layer
removed unnecessary BACKLIT
removed Media Controls in Base Layers
* [TASK] added left Navigation mode fixed some doc
* [Fix] locked navigation layer by adding a transparent key for nav_mod
keys
* [TASK] added some more symbols and removed lower F1-F12 keys
* [TASK] added some README and a layout design
* [FIX] forced for adding to repo
* [FIX] forced for adding to repo
* [FIX] problem with layerswitching and hanging ctrl
* removed image from repo
* removed github image link with permalink from layout designer
* removed github image link with permalink from layout designer
* replaced image with permalink to layout editor
* Added Modular keyboards L,R and NUM
Created code modules for the 3 modules of the modular keyboard.
Original idea by MechboardsUK. Uses i2c implementation similar to lets
split
* CU24 Support
Addes Support for the upcoming CU24 keyboard sold by CapsUnlocked
* Removed modular keyboards to make stuff clear
* Lower Case folders
* Remove CU24 - Rename Folder
* Add CU24 - Renamed
* Fixed ignore list
I am stupid
* Create keymap.c
Add Hag keymap, a heavily modified dvorak swedish keymap with multiple layouts and often used stuff under the alpha cluster.
* Create config.h
* Create rules.mk
* Add NIU Mini keymap from Planck keymap
* Remove old keymap files
* Fix README, removed Planck references
* Add default layout, move Planck layout to separate folder
* Update README
* Add my XD60 keymap
* Change RShift to slash
* Fix keymap: stuck on MO(1)
* Move RESET to Fn+Enter
* Add: RGB saturation cycle
* Add numpad layer to keymap
* Fix last case
* Cleanup Mechmini keymap. Once the custom RGB function is defined, there is no need to manually handle RGB code.
* Change default to KEYMAP_MIT, not KEYMAP_OFFSET
* Add custom RGB code for JJ40
* Reset Mechmini advertised power draw to 500. Will have to test actual maximum power draw later.
* RGB working on JJ40.
* Fix: saturation increase/decrease flipped
* Add new directory for my custom keymap with RGB keycodes
* Swap LAlt and LGUI
* Update JJ40 max power draw with measured value
* Update: fun40 rules.mk to enable underglow; earlier failed Travis CI
* Fix: init RGB LEDs on boot. Also added HHKB-like keymap for XD60.
* Super rudimentary backlight test, init RGB LEDs on boot
* Backlighting works - stays on for now
* Toggling working
* Now can override backlight.c functions. Problem was functions in backlight.c weren't called before due to a lack of matrix_scan_quantum() in matrix.c
* Timers not working
* Delete global.h
* Cleanup
* Compiles
* Good sign: LEDs stop working again
* Handle timer1 overflow
* Progress: fix: forgot to init
* Backlighting fully working now except breathing.
* Revert keymap to original keycodes
* Update XD60 keymap README
* Update JJ40 keymap with backlight toggles
* Breathing working just fine.
* Update references
* Add backlight_set() call
* Cleanup code to disable backlight
* Fix: does not compile
* Fix: missing call to rgblight_task.
* Testing with BACKLIGHT_BREATHING
* Cleanup
* Cleanup comments
* More commenting cleanup.
* Do not enable BACKLIGHT_BREATHING by default
* Update XD60 keymap
* Update: move matrix_scan_kb out from matrix.c to jj40.c (kb-level)
* Cleanup for PR
* Fix conflict in readme.md for NIU mini
* Restore original power consumption figure
* Fix: matrix_scan_user() now has to be defined in the keymaps
* Add weak `matrix_scan_user` so it does not have to be defined in keymap
* Add weak matrix_init_user()
* Adding personal BEAKL9 based keymap
Initial commit, very much a WIP/Proof of concept.
* Updating personal BEAKL9 based layout
* F-keys added to upper layer
* planck with a not-quite-neo layout for a de-DE OS/SW keymap
* ergodox infinity with a not-quite-neo layout for a de-DE OS/SW keymap
* add documentation
* Add xd75 layout
* Add Readme
* Update layout
* Remove Backlight keys
* Move ENTER / BACKSP / DEL
* Commit my bepo layout instead of the qwerty version since i will not use it
* Use 0 instead of 00
* Fix TODO key
* Update the readme
* Replace wrong key placment
* Update center column
* Update the layout with 2-u key
* Adjust the fn layer
* Adjust the main layer
* Adjust the fn layer
If BACKLIGHT_ENABLE is set to `yes` in `rules.mk`, then the user
can use the `BL_*` keycodes to adjust the backlight. At the moment,
only on/off is supported.
* started work on halfkeyboard
* update to keymap
* halfkey layouts complete for dvorak and qwerty
* added plover layout to halfkeyboard mapping
* fixed error in dvorak layout right hand
* fixed error in dvorak layout right hand, comments updated
* thing
* added minus and equals to normal layouts
* added minus and equals to normal layouts
* adde visualizer matching halfkeyboard mappings
* adde visualizer matching halfkeyboard mappings
* updated keymaps for mirror handedness functionality for all layers. Also added visualizer code for distinct color for each layer, and LCD text displaying the current layer.
* had a KC_TILD where should have had KC_GRAV
* its spelled KC_GRAVE
* added ATOM47 (Vortex Core QMK powered PCB)
* fixed broken\unfinished comment block
* moved Layer template to default template.
* moved Layer template to default template and removed template from the keymap.c file.
* Added LEdiodes config
* created readme.md
contains an image of 60% board(LEdiodes).
* updated readme.md with images
added images of the PCB and some feature details from https://geekhack.org/index.php?topic=93447.msg2545221#msg2545221
* removed excess words.
* followed the readme template to a T.
* formatting fix : added a return.
* ymdk_np21 initial support
Base support of ymdk_np21 - based on jj40. Full grid layout
* Update README.md
Replacing description.
* Adding YMDK NP21 to comunity list.
Adding YMDK NP21 to community supported list.
* ISO HHKB first commit
* First version of my HHKB ISO Spanish Keymap
* Readme.md
* Added more media keys.
Caps Lock added on function layer.
Backlight toggle added on funtion layer.
* RGB support for WS2812B RGB led strip
* RGB and brightness control.
* Cleanup Mechmini keymap. Once the custom RGB function is defined, there is no need to manually handle RGB code.
* Change default to KEYMAP_MIT, not KEYMAP_OFFSET
* Add custom RGB code for JJ40
* Reset Mechmini advertised power draw to 500. Will have to test actual maximum power draw later.
* RGB working on JJ40.
* Fix: saturation increase/decrease flipped
* Add new directory for my custom keymap with RGB keycodes
* Swap LAlt and LGUI
* Update JJ40 max power draw with measured value
* Update: fun40 rules.mk to enable underglow; earlier failed Travis CI
* Fix: init RGB LEDs on boot. Also added HHKB-like keymap for XD60.
* Super rudimentary backlight test, init RGB LEDs on boot
* Backlighting works - stays on for now
* Toggling working
* Now can override backlight.c functions. Problem was functions in backlight.c weren't called before due to a lack of matrix_scan_quantum() in matrix.c
* Timers not working
* Delete global.h
* Cleanup
* Compiles
* Good sign: LEDs stop working again
* Handle timer1 overflow
* Progress: fix: forgot to init
* Backlighting fully working now except breathing.
* Revert keymap to original keycodes
* Update XD60 keymap README
* Update JJ40 keymap with backlight toggles
* Breathing working just fine.
* Update references
* Add backlight_set() call
* Cleanup code to disable backlight
* Fix: does not compile
* Fix: missing call to rgblight_task.
* Testing with BACKLIGHT_BREATHING
* Cleanup
* Cleanup comments
* More commenting cleanup.
* Do not enable BACKLIGHT_BREATHING by default
* Move faux clicky into userspace
* Get Audio and RGB enabled on Orthodox-rev1
* Add faux click to userspace
* Add Orthodox Rev3 check to macros
* Hack Orthodox Name for drashna keymap
* No more One Shots
* Ergodox product name hack
* Enable Audio on Orthodox by default
* Get audio working on clueboard/60
* add keys for music mode
* Change doubles to floats
* add keys for all the songs
* revert to the default startup sound
* Remove music mode until we can figure out why it crashes
* gordon.c defines many aliases for KC codes.
* gordon.c defines many advanced tap dance functions.
* This is a squashed commit of about 6 months of work on chimera and
ergodox infinity changes.
* Ignore the change-id below.
Change-Id: I83927139e8a80fe08992ae91ec7d62571498f7f7
* Default layout with RGB and in-switch LED controls
This is a variation of the default keymap with added RGB underglow and in-switch LED controls.
* Readme for default_rgb keymap
* ISO keymap with RGB and in-switch LED controls
This is a variation of the default ISO keymap with added RGB Underglow and in-switch LED controls.
* readme for iso_rgb keymap
* Updated ACR60, Mechmini, ALU84 readme information and config.h descripters
Update MECHKEYS keyboards to be uniform in readmes and config.h's PID, MANUFACTORER, and DESCRIPTIONS. This allows the keyboards to be more uniform amongst the different types.
* Rename keyboards/alu84/keymaps/TurboMech/config.h to keyboards/alu84/keymaps/turbomech
* Rename keyboards/alu84/keymaps/turbomech to keyboards/alu84/keymaps/TurboMech/config.h
* Fixed folder naming for alu84/keymaps/turbomech
* fixed error from compile
removed double `return MACRO_NONE;` and `switch (id) {`
* Added initial in-switch LED support for the Eagle/Viper V2.
Currently only has four modes: All ON, Mods/Nums ON, Alphas ON, or All OFF
* Revert keymap changes
* Changed switch curly bracket to match style.
* info.json committed to support the qmk configurator project
These are info.json for each of the keyboards I've contributed to
during my time here at QMK
* change LAYOUT to KEYMAP to adhere to matrix definitions
* Preliminary support for Duck Eagle/Viper V2 60% board. This is a copy of the octagon/v2 with things changed to reach a compiling state
* Get a 60% keymap compiling, this might not be what the eagle/viper
really supports
* Update readme to point to correct GeekHack link
* Get keymap working on a Duck Eagle
* Add code submitted by profanum429
- Add HHKB style top row to v2.h
- Modify read_rows function to take into accout the caps lock firmware key
- Modify default keymap to match the new v2.h
- Adjust readmes
* Fix bug related to col 0 not working
* Add keymap for mechmerlin
* Add profanum429's viper hhkb layout
* Add visual representation for mechmerlin layout
Add navigation keys to keymap
* Add a better visual representation to the mechmerlin keymap
* Add profanum429's Viper layout!
* Updated profanum429 keymap to match a full HHKB
Enabled media keys in rules.mk
* Revert "Updated profanum429 keymap to match a full HHKB"
This reverts commit ed914160d7e27e6412d2c7c5c1c4fa0a04838667.
* Fix default keymap for Eagle
* Enable extra keys for audio control support
* Modified timings in indicator_leds to accomodate the WS2811S chips on the Eagle/Viper2 PCBs at 800kHz with a 16mHz clock
Modified the backlight settings to not interfere with the default RGB underglow code from QMK
Modified the order of the LEDs in the LED status bar at the top of the Eagle/Viper2 PCBs (3,2,1,6,5,4,8,7 order)
* Cleaned up indicator code to remove unused functions as the RGB underglow uses the
default driver provided by QMK
Commented out backlighting code in v2.c
* update readmes to reflect profanum's awesome contributions and fix typo in make instructions
* Remove custom RGB logic and just rely on QMK RGB underglow. We'll leave the backlighting in place for now
This creates a v1 and v2 subproject. V1 retains all the same implementations of the bootmapper-ported Mechmnini 1 including #2196. V2 adds the Mechmini 2.0 kayboard support (I know it took me way to long to get it a pull request in).
All readme's updated to reflect compiling the two seperate keyboards. Simply either `make mechmini/v1:default` or `make mechmini/v2:defualt`. Utilizing the rules.mk using `make mechmini:default` will automatically create the Mechmini 2 default keymap as this is the current version and has a much wider user base.
* Added V60 Type R Polestar Backlight and RGB Underglow support
* made RGB Underglow stuff optional, to support the non Polestar V60
* updated readme and rules
* fixed typo in readme
* add breathing to bananasplit
* backlight breathing overhaul
* fix the backlight_tick thing.
* fix for vision_division backlight
* fix a few keymaps and probably break breathing for some weirdly set-up boards.
* remove BL_x keycodes because they made unreasonable assumptions
* some fixes for BL keycodes
* integer cie lightness scaling
* use cie lightness for non-breathing backlight and make breathing able to reach true max brightness
* Cleanup Mechmini keymap. Once the custom RGB function is defined, there is no need to manually handle RGB code.
* Change default to KEYMAP_MIT, not KEYMAP_OFFSET
* Add custom RGB code for JJ40
* Reset Mechmini advertised power draw to 500. Will have to test actual maximum power draw later.
* RGB working on JJ40.
* Fix: saturation increase/decrease flipped
* Add new directory for my custom keymap with RGB keycodes
* Swap LAlt and LGUI
* Update JJ40 max power draw with measured value
* Update: fun40 rules.mk to enable underglow; earlier failed Travis CI
* Minor tweaks
modified: users/drashna/drashna.c
* Fix Workman ASCII art
* Add OSM for shifts
* Make Viterbi's 00 code consistant
* Minor Cleanup off Userspace
* Change Tapping Term on Ergodox
* Re-add EEPROM code
* Minor updates and tweaks
* Use QMK_H variables to make keymaps more universal
* Forgot 'break;' for covecube layer
* Tweak Viterbi files now that I have hands on
* Add secrets to Ergodox
* RGB tweaks to Viterbi
* Viterbi RGB layout tweeks
* Minor tweaks
* Add One Shot Mod tap toggle
* Add Faux Clicky to Viterbi, and disable controller's LEDs
* Minor tweaks
* Move D3 keycode defines into userspace
* Updated Userspace Readme
* iso_de_mac
ISO-DE layout with mac media controls
* Delete keymap.c
* iso_de_mac
ISO-DE support with Mac media keys
* Add files via upload
Layout overview
* iso layout support
Adds support for the extra key of ISO
* Update keymap.c
typo-fix
* fixed mac next key
* Delete Layout.png
* Delete keymap.c
* Added ALU84
Added ALU84 from mechkeys.ca. TurboMech keymap is MacOS oriented, need to still update the defualt keymap.
* added alu84 and TurboMech userspace
* updated keymap, config.h and rules.mk for alu84
* zweihander-osx: Remove app keys, etc.
- add right command keys
- add F16 on ;' for Siri
- remove command-Q (too easy to hit)
* Zweihander: update readme
* Preliminary commit for Octagon V1 support
This is essentially a cp -R v2 v1 with a few things changed to
get it to compile and build.
* The Octagon V1 supports up to 84 keys as opposed to the V2 which
supports up to 86. This commit changes the keymap to match it.
* Temporary default keymap just to get things to compile
* Update readme file
* Fix switch matrix
* Fix underglow lighting option
* Fix keymap to take care of shifted columns
* Fix keymap formatting
* Remove un-needed files left over from rasmusx
* Make Octagon V1 have its own keymap directory with default keymap
* Make Octagon V2 have its own keymap directory with default keymap
* Cleanups and readme edits
* adding new layout for the planck that helps when coming from the pok3r
* Fixing the function layer
* Update readme.md
* Update keymap.c
Making some small adjustments
* Update keymap.c
switching GUI and Esc
* Update keymap.c
* adding mod tap on left and right shift
* adding mod tap on left and right shift
* poker keymap for lets split
* fixing the FN layer
* removing unused file
* rename octagon_v2 directory to octagon directory
* Move octagon_v2 files to v2 sub-directory
* Edit readme files
* setup header files for building multiple versions of the Duck
Octagon.
* Changes as per Jack's PR 2170 comments
* Add keymap for my friend's KBD75\nBug : RGUI is read as RALT
* Add keymap for Nyquist
* Add Keymap for Whitefox (Truefox layout only)
* Add Keymap for XD75 and XD73 (XD75 with 1u blocker each on left and right bottom
* Added functions to read HSV values
I have added three functions to rgb_light.c to be able to read the hue, saturation and value from other places.
They are rgblight_get_hue(), rgblight_get_sat(), adn rgblight_get_val().
* Create keymap.c
* Add COSPAD support to QMK
I have ported the COSPAD numpad to qmk.
* Update readme.md
* Update cospad.c
* Line ending stuff again
* Added initial files for Christmas Tree PCB
* Updated Readme and info json's, also config.
* Cleaned up keymap file, added proper comments for keymap. Removed readme leftover from original copy of planck folder structure.
* Forgot to push rules.mk for the V2017 folder, fixed now.
* Initial commit for Octagon V2 Support
This is still basically just a copy of lightsaver support with
names changed.
* Port xauser keymap from: https://github.com/xauser/tmk_keyboard/blob/xauser/keyboard/octagon_v2/keymap_common.h
* Temporary default keymap just to get things compiling
* Modify config.h to have the right keyboard info
* Partial port of xauser matrix code for octagon v2
* Fix readme.md
1. Fix link to geekhack GB
2. Add microchips
3. Add appropriate attributions
* Fix PORTD
* Intermediate fix to get LEDs working
* Update BACKLIGHT_AREAS enum
* Port the following:
backlight_set
backlight_toggle_rgb
backlight_set_rgb
and resolve dependencies in header files
* Port backlight_update_state to led_set_kb
* Change copyright notice author to MechMerlin
* Remove Rasmus keymap
* Get a default keymap that actually does something and let's you reset.
* Convert keymap into KC_XXXX format.
* Better formatting of the default keymap to make it more readable
* Fix keymap
* Get that Fn key working!
* Some code cleanup and small refactor
* Fix keymap in octagon_v2.h
* Line ending stuff again
* Added initial files for Christmas Tree PCB
* Updated Readme and info json's, also config.
* Cleaned up keymap file, added proper comments for keymap. Removed readme leftover from original copy of planck folder structure.
* Initial K-Type support
* Copy PJRC_TEENSY_3_1 to work around watchdog issues
* K-Type: Remove bootloader offset in rules.mk
* Ensure matrix and scan quantum functions are called when needed
This is porting a fix from f5422a70b6
* Added xd60:Jos keymap
* Corrected Layout image for xd60:Jos layout
* Update README for xd60:Jos layout
* Created rules.mk for xd60:Jos layout
* Fixed an edge case for xd60:Jos layout
* Now using a specific for xd60:Jos layout instead of modifying the main one
* Better physical layout image for xd60:Jos layout
* new planck keymap, new feature - hybrid shift/enter action key (great for small keyboards!)
* corrected documentation to specify rules.mk file instead of Makefile
* Initial version of the Ergodox EZ Bépo keymap, TypeMatrix style.
* Update the readme file and add some handling of the keyboard LEDs.
* Toggling layer requires 2 taps.
* Remove a constant as it conflicts with an earier definition.
* Fix a typo in a type name.
* Fix the arrow layer that had a bad number.
* Second main version of my bepo keymap, after the tests of the first one.
* Fix the triggering of the function layer and the handling of the LED.
* Reduce the shining of the LEDs.
* Fix the swap layer (that required a keypress on the other side of the keyboard to be deactivated).
* Duplicate some of the mouse button for easy access.
* Move some of the secondary functions out of the center keys.
* Slightly slow down the mouse and mouse wheel.
* Update the comment and readme.md for the V2 of the keymap.
* Invert button 2 and 3 of the mouse. Really fix the SWAP layer.
* Test with the right alt modifier added as secondary function (on hold) of the space keys. The right alt key becomes a left alt one.
* Add specific shift/ctrl for the FN layer; move some mouse keys around to help with that.
* Remove one FN modifier-on-hold key that was not useful.
* Duplicate the FN layer inside the MOUSE layer.
* Add support (not tested yet) for macro recording and play on a single key as a tap dance.
* Allow to stop recording the macro by tapping once on the macro key (still un-tested).
* Add support for macro recording using some tap dance.
* shorten a comment.
* Reinstate the FN toggle on the percent key (so that there is an FN toggle on the right-hand-side).
* Fix some comments and update the link to the most up-to-date image.
* Small fix to the keymap images.
* Change overwatch to Gamepad
* Remove secrets file
* Add sample sensitive.h file
* Borrow @colinta's secrets.h include method
* Remove unnessary placeholder for macros
* Set secrets to use PROGMEM for char string
* Add readme files to my keymaps and userspace
* ignore libs
* Clang complete file
* Add VIM_A, VIM_S, VIM_COMMAND_SHIFT_D, and VIM_COMMAND_SHIFT_A
Add VIM_A, VIM_S, VIM_COMMAND_SHIFT_D, and VIM_COMMAND_SHIFT_A
a s O
* Comment blocks for minimap
generated at
http://patorjk.com/software/taag/#p=display&h=0&v=0&c=c&f=Banner&t=COMMENT
* Be explicit
* More Comment blocks
* Add J
* add A, C, D, J, S, O
* Make h j k l explicitly vim commands (useful for JOIN)
* add cb ce cw ch cj ck cl db de dw dh dj dk dl vb ve vh vj vk vl x ciw diw viw
* debug messages for ci di vi
* Var capitalized
* Save bytes by disabling mouse keys
* Add Y P
* Be more explicit about which key was pressed
* Be more explicit about which key was sent
* Move project to new directory structure
* Remove non-vim layout folder
* Replace KC_TRNS with KC_NO on normal layer
* Insert Mode as default
* Try to prevent crashes
* Put normal mode back
* Revert "ignore libs"
This reverts commit 4c5d7592d6c1b70e689c0b9400afca19c71970a7.
* add rules.mk
* Add mouse bindings
* Checkout most recent keymap following rebase
* Realign mouse button keys
* Make a macro for TO(NORMAL_MODE)
* add i2c lib submodule
* add actuation point adjustment to fc980c
* add actuation point adjustment to fc660c also.
* use https for i2c submodule
* move to existing i2c lib
* properly remove old submodule
* oops, forgot some files for the fc660c
* Line ending stuff again
* Added initital files and layout for the PCB Ruler keyboard/macro pad thing
* Updated Readme
* Changed make command to new format
"unselecting" left-hand rows is a wasted i2c transaction.
On the left-hand side, the ergodox uses a GPIO expander. It
does *not* change "direction" (input/output) of pins, it just
sets pins high or low.
But all the pins are written at once. There's no way to
change just one pin's value; you send a full byte of all eight
row pins. (Not all of them are in use, but that doesn't matter.)
So every pin is either +V or ground. This is in contrast
with the right-hand side, which is using input mode to make pins
be neutral.
So there's no need to "deselect" the rows on the left side
at all. To select row 0, you set the GPIO register for the
rows to 0xFE. The previous code would then set it back to
0xFF, then set it to 0xFD on the next cycle. But we can just
omit the intervening step, and set it to 0xFD next cycle,
and get the same results.
And yes, I tested that the keyboard still works.
On my system, scan rate as reported by DEBUG_SCAN_RATE goes
from 445 or so to 579 or so, thus, from ~2.24ms to ~1.73ms.
Signed-off-by: seebs <seebs@seebs.net>
This link was broken. And the latest, live version of that keymap link doesn't line up with the docs below, so the link will now point to the older version of the file in the git history
* pull fuse settings for bootloader jump
* fix 32a chips
* make automatic bootloader selection optional
* quantify bootloaders
* fixs #164, speeds up dfu reset
* fix for chips w/o usb
* missing an n
* fix bootloader sizes, use words for addresses
* fix bmini, pearl, and [[ issue, make things quiet
* ignore avr errors on arm for now
* update settings for the light
* document bootloader stuff
* add bootloader title
* Copy the ergodox_ez code to handwired/dactyl
Differences from the Ergodox:
* Use QMK_SUBPROJECT_H instead of QMK_KEYBOARD_H, since it's under
handwired
* Omitted several keymaps. They'll eventually be broken (since the
Dactyl has fewer keys), and I don't want to try to fix them.
* Omitted the keymap images for the default layout, since they depict
a different keyboard.
* Everything that said Ergodox now says Dactyl, naturally.
* [whitespace] Delete trailing whitespace
My editor does this automatically so it's just gonna keep cropping up...
* Cut the dactyl down to the right number of columns
(Remember, throughout matrix.c, everything called "row" is really a
column, and vice-versa).
* Remove LED-related code
* Tighten up the Dactyl's build options
* Whitespace cleanup in twimaster.c
* Hardtabs -> spaces
* No more trailing whitespace
* Typo fix
* Correct the CPU frequency units
The Teensy's CPU definitely doesn't run at 16 petahertz...
* Restore access to ONEHAND_ENABLE
I turned it off in 26d47cb42622d990a7c3335e7fcc151aa3edfbf0 while
desperately debugging; I just wanted to ensure it wasn't causing the
problem I was seeing. It was not, in fact, causing the problem, so it's
back.
Also fixed the swap matrix in dactyl.c, since it still referred to
columns that exist in the Ergodox but not the Dactyl.
* Clearer phrasing about TWI's effect on scan rate
* Fix up the Dactyl's firmware-loading instructions
Sadly, the Dactyl has no hole for the onboard reset button.
* Dvorak keymap for the Dactyl
* The Erincalling Layout
* Erincalling layout: Add a := key
I've been working in Go, which uses := a lot, and it's awkward to type
in this layout.
* Dactyl README: link to the dactyl-keyboard repo
* Add a missing copyright line
I don't know how much this matters? Honestly, it's enough for me that my
name is on the git commit. But hey, let's be consistent until there's a
specific reason not to be, right?
* Dactyl: remove commented-out code
I hate it I hate it I hate it
There's not even any information about what it was trying to do!!!! >:(
* Add a note about the row/column ridiculousness
* [whitespace] realign some constants
* Don't claim B4 is tied to VCC
It doesn't matter at all? I honestly don't know what the reason ever
was. It looks like it dates back to the original ErgoDox and I've never
seen one sentence about the purpose.
I've been skipping that wire for some time, and I promise it works fine.
* Dactyl keymaps: Send RALT for right-hand alt key
Not terribly important but I just like things tidy OK
* typo fix
* Refer to "dactyl.h" explicitly
QMK_SUBPROJECT_H has been working locally, but fails in CI. Strange!
* Dactyl: Don't use QMK_SUBPROJECT_H at all
It's still breaking in CI, even though it was a never a problem locally.
* linux shake-around
* move terminal and browser spawning keys
* add a shift to window resizing keys to free combo up for window management
* "jump to tab" shortcuts for firefox
* change window resize modifiers
* change wm keys
* change wm keys again, and reformat keymap to 80chars
* typos
* language key
* qwerty layer for SO, general cleanup
* adds my xd75 layout
* add secret strings to 'secrets.h' behind compile flag, assign defaults
* macro keys now have defaults (hidden in colinta.h) before any recording, and after clearing the dynamic macros.
* fixed whitespace - using 4 spaces instead of 2
With these changes, the ergodox ez goes from 315 scans per second
when no keys are pressed (~3.17ms/scan) to 447 (~2.24ms/scan).
The changes to the pin read are just condensing the logic, and
replacing a lot of conditional operations with a single bitwise
inversion.
The change to row scanning is more significant, and merits
explanation. In general, you can only scan one row of a keyboard
at a time, because if you scan two rows, you no longer know
which row is pulling a given column down. But in the Ergodox
design, this isn't the case; the left hand is controlled by an
I2C-based GPIO expander, and the columns and rows are *completely
separate* electrically from the columns and rows on the right-hand
side.
So simply reading rows in parallel offers two significant
improvements. One is that we no longer need the 30us delay after
each right-hand row, because we're spending more than 30us
communicating with the left hand over i2c. Another is that we're
no longer wastefully sending i2c messages to the left hand
to unselect rows when no rows had actually been selected in the
first place. These delays were, between them, coming out to
nearly 30% of the time spent in each scan.
Signed-off-by: seebs <seebs@seebs.net>
This is particularly relevant for, e.g., the ergodox EZ and
other keyboards with slow scan rates. Without changing the API or
behavior of individual process_record() calls, we allow a
configuration flag to make multiple calls in a single scan.
This will probably have miniscule effects on non-steno users,
and it's not enabled by default for any keyboards. Added note
about it to ergodox README.
Signed-off-by: seebs <seebs@seebs.net>
* move underglow led count from parent to child
* Added pearl support
* Added personal keymap for pearl
* start splitting up ps2avrGB boards
* clean up ps2avrgb boards
* Move keycodes to their own section
* Clarify `KC_PWR` vs `KC_POWER`. Fixes#1994.
* Cleaned uppersonal userspace and keymaps (#1998)
* Cleanup of keymaps
* Remove Tap Dance from Orthodox keymap
* Cleaned up userspace and keymaps
* Added sample (template)userspace files to my folder
* Document the Teensy hardware reset problem
* add mfluid keymap to atreus62
* Update hand_wire.md
Change "Resin" to "Rosin"
* Add keyboard: mt40 (#2001)
* add keyboard: chinese planck clone
* rename chinese_planck to mt40
* add image for the mt40 board
* lets_split: Fix matrix_init for ROW2COL
Signed-off-by: Marian Rusu <rusumarian91@gmail.com>
* Add Keymap for Whitefox Truefox layout
* Add keyboard: ACR60 (#1999)
* base acr60 keyboard folder created
* mitch acr60 keymap updates, documentation
* latest keymap updates
* slight modifications to layer switching
* Changes to Atreus and Ergodox EZ Dvorak 42key layout (#1997)
* importing 42 key dvorak layout
* added comment for build instructions
* adding atreus dvorak 42 key layout
* added readme
* add readme
* build instructions
* additional MEH shortcuts
* added shifted symbols on symbols layer
* working extra symbols on COMBINED layer
* bring atreus layout inline with the ergodox one
* add necessary macros
* working ls macro
* added more shell macros
* added screen rename / screen number macros
* add ctrl-a key in shell-nav to use screen more easily
* added shell screen layer
* assign screen switching macros to screen layer
* define all screen switching macros
* more screen-related shortcuts added on shell screen layer
* change shell nav bottom right row to match base layer (backspace / delete)
* remove some mappings on SHELL_NAV layer as they are now in the screen layer
* added more screen macros
* changes to COMBINED layer (pipe on the right) and modified shell nav
* moved pipe/backslash to then right
* documented SHELL_SCREEN layer
* put backspace/delete on SHELL_NAV layer
* add an explicit lisence file for github to pickup
* Updated keymaps to allow base layer alternation for QWERTY, Colemak & Dvorak (#1962)
* First commit of the Terminus_Mini firmware and the DivergeJM version of the Nyquist firmware
* Fix terminus_mini & nyquist/DivergeJM readme files
Previously an outdated copy of the default readme. Updated to match the Nyquist/DivergeJM format (DivergeJM is a split 5x12 implementation of the terminus_mini layout)
* Update makefiles to rules.mk
Renamed both Makefiles to rules.mk, removed references to makefiles
* Updated rules.mk
Inadvertantly removed important code from the rules.mk in previous commit. This has been restored.
Also disabled Tap_Dance in both rules.mk files
* Moved terminus_mini to handwired
Realised that existing directory was not appropriate for the terminus_mini project, moved to handwired.
* New Frosty Flake layout for QFR TKL
Added a TKL layout for the Frosty Flake with a navigation cluster on LOWER under the left hand and a similarly functioning MOUSE layer that includes mouse navigation functionality.
* README fix & keymap update for 3 keyboards
Fixed the markdown for the handwired/terminus_mini:default, Nyqyist:DivergeJM & frosty_flake:QFR_JM.
Added TAPPING_TERM = 150 to config.h for all keyboards
Switched LT(LOWER) and LAlt on the mod row for ortholinear boards.
* Update readme for QFR_JM to include make instructions
* Revert "Merge branch 'master' of https://github.com/mogranjm/qmk_firmware"
This reverts commit a45f264ada09acc14fb85390407bc7ff5bb021e3, reversing
changes made to 62349c33410671a33d4041d50cf27de1d6bdd9cf.
* Revert "Revert "Merge branch 'master' of https://github.com/mogranjm/qmk_firmware""
This reverts commit eae54fb3be2c60dffd704261f84bab98c9e06f93.
* Added QWERTY support to the QFR_JM
Implemented variable default base layer from the Planck default keymap.
* Update README to reflect QWERTY support
* Nyquist:DivergeJM - Update RESET location
Add a reset button to both hands, accessible when halves are disconnected.
* Typo fix
* Update DivergeJM
Switched master to Left hand,
Moved Reset key to a different location
* Added macros to send R pointer & dplyr pipe
Macros added as a string of keypresses, couldn't figure out how to get SEND_STRING to work.
* Added ADJUST -> QWERTY, DVORAK, COLEMAK
Re-implemented update_tri_layer fuctionality to reset base layer for Terminus_Mini & DivergeJM Nyquist keymaps to QWERTY, DVORAK or COLEMAK via the ADJUST layer.
Updated ReadMe files accordingly.
* Fix base layout diagram for Terminus_Mini
Remove split from diagram
* Changed the R operators to SEND_STRING, rather than keypress macros
* Added Dvorak to the QFR_JM keymap
* fixed duplicate row in Nyquist keymap
* Fix readme - LAlt location on mouse layer
* Set EE_HANDS to allow either Nyquist hand to work as master.
* Update R operator strings, clean up layering for terminus_mini, QFR_JM and DivergeJM
"<-" to " <- "
"%>%" to " %>% "
Also played around with the layering, removed unnecessary TAP_TOGGLE for LOWER and shuffled FUNCTION and MOUSE momentary actions to reflect layer order.
* Update bottom alpha row to output symbols on LOWER
This row now outputs the following (z -> /) when in the LOWER layer:
<-
%>%
{
[
`
|
]
}
.
/
* Updated readme files for QFR_JM, terminus_mini & DivergeJM
QFR_JM readme reflects correct LOWER bottom row symbol output,
terminus_mini & DivergeJM reflect correct command line make instructions.
* Add media keys to QFR_JM LOWER - Replicate QFR default functionality
* Fix issue with Mouse layering
Stuck on mouse layer because the wrong macro was assigned to the 'exit layer' key. Reassigned that key.
* Changed " <- " to "<- " for QFR_JM, terminus_mini & DivergeJM
* Add "KC_MAKE" to userspace example
* QMK DFU bootloader generation (#2009)
* adds :bootloader target
* update planck and preonic revisions
* remove references to .h files for planck
* update preonic keymap
* only add keyboard.h files that exist
* add production target
* hook things up with the new lufa variables
* update rules for planck/preonic
* back backlight key turn of status led when pressed
* add manufacturer/product strings to bootloader
* fix push script
* Added support for let's split kailh socket version (#2010)
* Added support for socket version of the let's split
* renamed files
* socket-version-works
* fix up lets_split keymaps
* fix up lets_split keymaps
* shrink preonic by a bit
* fix lets_split keyboards
* update travis script
* update travis script
* update version silencing
* - Fixed DK60 version in config.h
* - Updated dk60 readme with new QMK rules
* - Fixed wording in readme
* Added dbroqua layout for DZ60
I've also updated dz60.h to add "true HHKD" keymap definition (6U
spacebar).
With the default HHKB definition r_alt was not mapped and when I pressed
r_menu it was r_alt.
Regards
* Updated dbroqua layout for HHKB keyboard
Added default configuration and alternate (swap gui/alt keys).
Save user choice in keyboard memory (like plank, thanks for this
feature!).
* adds :bootloader target
* update planck and preonic revisions
* remove references to .h files for planck
* update preonic keymap
* only add keyboard.h files that exist
* add production target
* hook things up with the new lufa variables
* update rules for planck/preonic
* back backlight key turn of status led when pressed
* add manufacturer/product strings to bootloader
* First commit of the Terminus_Mini firmware and the DivergeJM version of the Nyquist firmware
* Fix terminus_mini & nyquist/DivergeJM readme files
Previously an outdated copy of the default readme. Updated to match the Nyquist/DivergeJM format (DivergeJM is a split 5x12 implementation of the terminus_mini layout)
* Update makefiles to rules.mk
Renamed both Makefiles to rules.mk, removed references to makefiles
* Updated rules.mk
Inadvertantly removed important code from the rules.mk in previous commit. This has been restored.
Also disabled Tap_Dance in both rules.mk files
* Moved terminus_mini to handwired
Realised that existing directory was not appropriate for the terminus_mini project, moved to handwired.
* New Frosty Flake layout for QFR TKL
Added a TKL layout for the Frosty Flake with a navigation cluster on LOWER under the left hand and a similarly functioning MOUSE layer that includes mouse navigation functionality.
* README fix & keymap update for 3 keyboards
Fixed the markdown for the handwired/terminus_mini:default, Nyqyist:DivergeJM & frosty_flake:QFR_JM.
Added TAPPING_TERM = 150 to config.h for all keyboards
Switched LT(LOWER) and LAlt on the mod row for ortholinear boards.
* Update readme for QFR_JM to include make instructions
* Revert "Merge branch 'master' of https://github.com/mogranjm/qmk_firmware"
This reverts commit a45f264ada09acc14fb85390407bc7ff5bb021e3, reversing
changes made to 62349c33410671a33d4041d50cf27de1d6bdd9cf.
* Revert "Revert "Merge branch 'master' of https://github.com/mogranjm/qmk_firmware""
This reverts commit eae54fb3be2c60dffd704261f84bab98c9e06f93.
* Added QWERTY support to the QFR_JM
Implemented variable default base layer from the Planck default keymap.
* Update README to reflect QWERTY support
* Nyquist:DivergeJM - Update RESET location
Add a reset button to both hands, accessible when halves are disconnected.
* Typo fix
* Update DivergeJM
Switched master to Left hand,
Moved Reset key to a different location
* Added macros to send R pointer & dplyr pipe
Macros added as a string of keypresses, couldn't figure out how to get SEND_STRING to work.
* Added ADJUST -> QWERTY, DVORAK, COLEMAK
Re-implemented update_tri_layer fuctionality to reset base layer for Terminus_Mini & DivergeJM Nyquist keymaps to QWERTY, DVORAK or COLEMAK via the ADJUST layer.
Updated ReadMe files accordingly.
* Fix base layout diagram for Terminus_Mini
Remove split from diagram
* Changed the R operators to SEND_STRING, rather than keypress macros
* Added Dvorak to the QFR_JM keymap
* fixed duplicate row in Nyquist keymap
* Fix readme - LAlt location on mouse layer
* Set EE_HANDS to allow either Nyquist hand to work as master.
* Update R operator strings, clean up layering for terminus_mini, QFR_JM and DivergeJM
"<-" to " <- "
"%>%" to " %>% "
Also played around with the layering, removed unnecessary TAP_TOGGLE for LOWER and shuffled FUNCTION and MOUSE momentary actions to reflect layer order.
* Update bottom alpha row to output symbols on LOWER
This row now outputs the following (z -> /) when in the LOWER layer:
<-
%>%
{
[
`
|
]
}
.
/
* Updated readme files for QFR_JM, terminus_mini & DivergeJM
QFR_JM readme reflects correct LOWER bottom row symbol output,
terminus_mini & DivergeJM reflect correct command line make instructions.
* Add media keys to QFR_JM LOWER - Replicate QFR default functionality
* Fix issue with Mouse layering
Stuck on mouse layer because the wrong macro was assigned to the 'exit layer' key. Reassigned that key.
* Changed " <- " to "<- " for QFR_JM, terminus_mini & DivergeJM
* importing 42 key dvorak layout
* added comment for build instructions
* adding atreus dvorak 42 key layout
* added readme
* add readme
* build instructions
* additional MEH shortcuts
* added shifted symbols on symbols layer
* working extra symbols on COMBINED layer
* bring atreus layout inline with the ergodox one
* add necessary macros
* working ls macro
* added more shell macros
* added screen rename / screen number macros
* add ctrl-a key in shell-nav to use screen more easily
* added shell screen layer
* assign screen switching macros to screen layer
* define all screen switching macros
* more screen-related shortcuts added on shell screen layer
* change shell nav bottom right row to match base layer (backspace / delete)
* remove some mappings on SHELL_NAV layer as they are now in the screen layer
* added more screen macros
* changes to COMBINED layer (pipe on the right) and modified shell nav
* moved pipe/backslash to then right
* documented SHELL_SCREEN layer
* put backspace/delete on SHELL_NAV layer
* More keymap fixes. F-row on bottom layer wasn't fully setup, also switched raise/lower keys to use tap-toggle.
* Added PrScr, put Tab back on top layer.
* Fixed build breakage with default keymap (unneeded rgblight.h include)
* Add yuuki keymap
Documentation is still a TODO and the keymap may not be final
* GRV on colon
* add KC_GRV to FN ESC
* more RGB modes
* Update README.md
Add image of layout and fix typo
* switch from jpg to png
For some reason the JPG had red outlines around the keys.
* remove whitespace
* add instruction to reset keyboard before flashing
* gh60 stytle layout
* moved the GH60 style layout to new folder
* add HOME and END
* Add heading
* moved ayanami to other branch
* restructure converters
each converter is its own keyboard and different hardware variants are different subprojects.
remove (seemingly) old method of loading layouts from main Makefile
* call led_set_kb() from overridden led_set()
* put converter back into one folder
* revert some structure changes to bring in line with #1784.
Also attempt to get the BLE thing more properly integrated.
Also also fix led_set() to call led_set_kb().
* Add woodpad
* Cleanup
* Remove misc layouts for woodpad
* Move woodpad to handwired
* Updated RGB Underglow info
* Cleanup macros
* Tweaked RGB lighting stuff
* Start to merge orthodox/ergodox keymaps (persistant layers)
* Add woodpad
* Add forced NKRO
* Added default layer (qwerty/colemak/dvorak) detection to RGB Underglow
* Updated macros and added workman keymaps
* Fixed RGB lighting for Workman layout
* Add leader keys
* Remove force NKRO
* Add Viterbi one handed layout and minor tweaks to others
* Finishing up Viterbi keyboard layout, and NKRO tweaks to other layouts
* Made "make" keystroke universal
* Clean up and updates of drashna keymaps
* Add workman layer to planck
* Update to keymaps
* Fix makefile toggle code in ez keymap
Finish adding RGB code to orthodox
* Updated RGB Underglow layer indication code due to discovery of the layer_state_set_kb function
* Remove unnecessary planck layout
* Fixed Workman song
* update make command and added lit reset
* Fixed formatting to fall in line with official standards
* Minor tweaks
* Removed Leader Keys from Ergodox EZ Keymap
Added KC_RESET that resets board and sets underglow to red
* Tweak reset code
* Cleanup
* Remove misc layouts for woodpad
* Move woodpad to handwired
* Updated RGB Underglow info
* Cleanup macros
* Tweaked RGB lighting stuff
* Start to merge orthodox/ergodox keymaps (persistant layers)
* Add forced NKRO
* Added default layer (qwerty/colemak/dvorak) detection to RGB Underglow
* Updated macros and added workman keymaps
* Fixed RGB lighting for Workman layout
* Add leader keys
* Remove force NKRO
* Add Viterbi one handed layout and minor tweaks to others
* Finishing up Viterbi keyboard layout, and NKRO tweaks to other layouts
* Made "make" keystroke universal
* Clean up and updates of drashna keymaps
* Add workman layer to planck
* Update to keymaps
* Fix makefile toggle code in ez keymap
Finish adding RGB code to orthodox
* Updated RGB Underglow layer indication code due to discovery of the layer_state_set_kb function
* Remove unnecessary planck layout
* Fixed Workman song
* update make command and added lit reset
* Fixed formatting to fall in line with official standards
* Minor tweaks
* Removed Leader Keys from Ergodox EZ Keymap
Added KC_RESET that resets board and sets underglow to red
* Tweak reset code
* Fix rebasing issues
* remove head files
* Fix "macro" issue
* Rename ez keymaps for userspace
* Revert "Rename ez keymaps for userspace"
This reverts commit c25425911852e41711a5f0273b5741adb16e5bd4.
* Renamed Ergodox EZ layouts so that all of my personal layouts are on the same name, in prep for using userspaces
* Fix ergodox code
* Remove "drashna-ez" keymap as it's no longer needed
* Migrate majority of code to Userspace
* Add woodpad
* Cleanup
* Remove misc layouts for woodpad
* Move woodpad to handwired
* Updated RGB Underglow info
* Cleanup macros
* Tweaked RGB lighting stuff
* Start to merge orthodox/ergodox keymaps (persistant layers)
* Add woodpad
* Add forced NKRO
* Added default layer (qwerty/colemak/dvorak) detection to RGB Underglow
* Updated macros and added workman keymaps
* Fixed RGB lighting for Workman layout
* Add leader keys
* Remove force NKRO
* Add Viterbi one handed layout and minor tweaks to others
* Finishing up Viterbi keyboard layout, and NKRO tweaks to other layouts
* Made "make" keystroke universal
* Clean up and updates of drashna keymaps
* Add workman layer to planck
* Update to keymaps
* Fix makefile toggle code in ez keymap
Finish adding RGB code to orthodox
* Updated RGB Underglow layer indication code due to discovery of the layer_state_set_kb function
* Remove unnecessary planck layout
* Fixed Workman song
* update make command and added lit reset
* Fixed formatting to fall in line with official standards
* Minor tweaks
* Removed Leader Keys from Ergodox EZ Keymap
Added KC_RESET that resets board and sets underglow to red
* Tweak reset code
* Cleanup
* Remove misc layouts for woodpad
* Move woodpad to handwired
* Updated RGB Underglow info
* Cleanup macros
* Tweaked RGB lighting stuff
* Start to merge orthodox/ergodox keymaps (persistant layers)
* Add forced NKRO
* Added default layer (qwerty/colemak/dvorak) detection to RGB Underglow
* Updated macros and added workman keymaps
* Fixed RGB lighting for Workman layout
* Add leader keys
* Remove force NKRO
* Add Viterbi one handed layout and minor tweaks to others
* Finishing up Viterbi keyboard layout, and NKRO tweaks to other layouts
* Made "make" keystroke universal
* Clean up and updates of drashna keymaps
* Add workman layer to planck
* Update to keymaps
* Fix makefile toggle code in ez keymap
Finish adding RGB code to orthodox
* Updated RGB Underglow layer indication code due to discovery of the layer_state_set_kb function
* Remove unnecessary planck layout
* Fixed Workman song
* update make command and added lit reset
* Fixed formatting to fall in line with official standards
* Minor tweaks
* Removed Leader Keys from Ergodox EZ Keymap
Added KC_RESET that resets board and sets underglow to red
* Tweak reset code
* Fix rebasing issues
* remove head files
* Fix "macro" issue
* Rename ez keymaps for userspace
* Revert "Rename ez keymaps for userspace"
This reverts commit c25425911852e41711a5f0273b5741adb16e5bd4.
* Renamed Ergodox EZ layouts so that all of my personal layouts are on the same name, in prep for using userspaces
* Fix ergodox code
* Remove "drashna-ez" keymap as it's no longer needed
avoid the following error when `UNICODEMAP_ENABLE = yes`:
```
quantum/process_keycode/process_unicodemap.c:52:21: error: implicit declaration of function 'pgm_read_dword'
```
* Set up tap dance for layers on the lower button.
* Refactored code to share in the users directory between my two keyboard layouts.
* Small keyboard layout change.
* Updated documentation on oneshot usage in macros/tap dance.
* importing 42 key dvorak layout
* added comment for build instructions
* adding atreus dvorak 42 key layout
* added readme
* add readme
* build instructions
* additional MEH shortcuts
* added shifted symbols on symbols layer
* working extra symbols on COMBINED layer
* bring atreus layout inline with the ergodox one
* add necessary macros
* working ls macro
* added more shell macros
* added screen rename / screen number macros
* add ctrl-a key in shell-nav to use screen more easily
* added shell screen layer
* assign screen switching macros to screen layer
* define all screen switching macros
* more screen-related shortcuts added on shell screen layer
* change shell nav bottom right row to match base layer (backspace / delete)
* remove some mappings on SHELL_NAV layer as they are now in the screen layer
* added more screen macros
* Fix RGBLIGHT startup color
While it's awesome to see the layer indicating code in here (no really!), and the general rule is to not alter the default keymap/code....
The problem with the layer_state_set_kb call handling this, is that the code doesn't seem to be called at startup. So the default layer color won't ever get set on startup. It needs to be called in the init function to be properly set.
I've played with this extensively, and if you check my keymaps, that is precisely why I have the setrgb/sethsv in the init function.
* Removed typo (pipe)
* mitosis/datagrok: reduce features from rules.mk
* mitosis/datagrok: make both layer keys neighbor shift
* mitosis/datagrok: (no-op) tweak some comments
* mitosis/datagrok: set baudrate to 250k
This requires a corresponding change to the mitosis wireless firmware:
https://github.com/reversebias/mitosis/pull/10
* mitosis/datagrok: move design description from code comment to a readme
* mitosis/datagrok: new layout, new shifted keys, efficient LED code
This is experimental, but compiles and seems to work correctly.
* mitosis/datagrok: whoops, move readme.md
* mitosis/datagrok: a minor layout improvement simplifies custom-shifted code
instead of [, .] [? !], using [, ?] [. !] greatly simplifies the code
needed to perform the shifted-key switching. (And keeps , and . on the
same keys that they are under qwerty.)
also: layout improvements for symbols
* mitosis/datagrok: make my code conform to QMK style guidelines
* mitosis/datagrok: TODO note for layout table in README
* mitosis/datagrok: remove led_set_user until i figure out other changes
need to see if the corresponding changes needed in the keyboard-level code
is okay.
* mitosis/datagrok: simpler layer indicator
* mitosis/datagrok: undo change to keyboard baud; make it in my layout dir.
* mitosis/datagrok: apply same punctuation hack to qwerty layer
* mitosis/datagrok: enable qwerty layer toggle
* mitosis/datagrok: update readme
* Add satan keymap: HHKB-alike based on dbroqua's, with mouse functionality and without LED functionality
* move mouse layer to DOUBLE_HOLD, add UTIL layer for TRIPLE_HOLD
- UTIL layer
- currently has "RESET" key and nothing else.
- functionality otherwise covered by bootmagic should go here
- small bugfix: dispatch of [QTY]_HOLD should be based on range tap count
falls in, not exact count.
* Added support for Knops Mini (3x2 macropad) keyboard.
* Added better documentation, according to the QMK standards.
* Fixed typo.
* Changed names of files to comply with QMK standards.
* Ignored makefile in keymap.
* Removed makefiles and added my credentials in the copyrights.
* adds .qmk file type as a target
* adds info.json with vendor and product
* add files for qmk info script
* add layout file for planck
* ignore .qmk files
* more settings
* update rules for avr and chibios
* update .qmk generation for info.json and inheritence
* Typo: Github => GitHub
* Typo: windows => Windows, docker => Docker, and some punctuations
* "QMK Introduction" links to the right file
* "Unix" rather than "UNIX", which is a trademark
* Directory name is "keyboards", not "keyboard"
* "handwired" is a subdirectory of "keyboards"
* Punctuation and minor fixes
* macOS rather than Mac
* Punctuation and other minor fixes
* Vagrant Guide links to an existing file
* Jun Wako referenced with his name rather than his nickname
* Saxon genitive 's outside the link
* Add woodpad
* Cleanup
* Remove misc layouts for woodpad
* Move woodpad to handwired
* Updated RGB Underglow info
* Cleanup macros
* Fix odd merge issue
* Tweaked RGB lighting stuff
* Start to merge orthodox/ergodox keymaps (persistant layers)
* Add forced NKRO
* Added Colemak and Dvorak layers to default orthodox keymap
* Added default layer (qwerty/colemak/dvorak) detection to RGB Underglow
* Updated macros and added workman keymaps
* Fixed RGB lighting for Workman layout
* Add leader keys
* Remove force NKRO
* Add Viterbi one handed layout and minor tweaks to others
* Finishing up Viterbi keyboard layout, and NKRO tweaks to other layouts
* Made "make" keystroke universal
* Clean up and updates of drashna keymaps
* Add workman layer to planck
* Update to keymaps
* Fix accidental commit because I don't know how to git
* Fix makefile toggle code in ez keymap
Finish adding RGB code to orthodox
* missing underscore in init function declaration
* Updated RGB Underglow layer indication code due to discovery of the layer_state_set_kb function
* Remove unnecessary planck layout
* Created Kona Classic config
* Fixed KonaClassic config
* Updated README
* Updated Readme to conform to format standards
* Added ANSI and ISO layout options
* Fixed images in Readme
* Added labels to images
* Added absolute links to images in Readme
* Image link updates again
* Fixed bottom row keys in some layouts
* Fixed Grave and Tilde
* Fixed Underglow in Kona Classic configs
* Renamed KonaClassic to kona_classic
* add RETRO_TAP: tap anyway, even after TAP_TERM, if no interruption
* consistent variable name
* add option doc
* change name for consistency
* make RETRO_TAPPING default to off
* 🔧 add editorconfig
This makes supported editors automatically change their settings to match desired code styles
* 🔧 add extension recommendation for VSCode
This will cause VS Code to prompt the user to install the EditorConfig extension when they open the project.
If this is felt to be too opinionated, I can revert it.
* Fix pointer device options
when the feature was added, the appropriate option definition wasn't created. This needs to be added to function properly.
* Update common_features.mk
* missing underscore in init function declaration
I'm almost 100% sure "else if (state->count = 2) {" was a typo (it should have two ='s for a logical operator), and I'm *pretty* sure "if (state->interrupted || state->!pressed) return SINGLE_TAP;" has a typo. At least, it returns an error on my machine saying something about an unexpected '!'.
I changed it to a slightly longer form (i.e., "state->pressed==0"), and that worked fine.
* First commit of the Terminus_Mini firmware and the DivergeJM version of the Nyquist firmware
* Fix terminus_mini & nyquist/DivergeJM readme files
Previously an outdated copy of the default readme. Updated to match the Nyquist/DivergeJM format (DivergeJM is a split 5x12 implementation of the terminus_mini layout)
* Update makefiles to rules.mk
Renamed both Makefiles to rules.mk, removed references to makefiles
* Updated rules.mk
Inadvertantly removed important code from the rules.mk in previous commit. This has been restored.
Also disabled Tap_Dance in both rules.mk files
* Moved terminus_mini to handwired
Realised that existing directory was not appropriate for the terminus_mini project, moved to handwired.
* New Frosty Flake layout for QFR TKL
Added a TKL layout for the Frosty Flake with a navigation cluster on LOWER under the left hand and a similarly functioning MOUSE layer that includes mouse navigation functionality.
* README fix & keymap update for 3 keyboards
Fixed the markdown for the handwired/terminus_mini:default, Nyqyist:DivergeJM & frosty_flake:QFR_JM.
Added TAPPING_TERM = 150 to config.h for all keyboards
Switched LT(LOWER) and LAlt on the mod row for ortholinear boards.
* Update readme for QFR_JM to include make instructions
* Revert "Merge branch 'master' of https://github.com/mogranjm/qmk_firmware"
This reverts commit a45f264ada09acc14fb85390407bc7ff5bb021e3, reversing
changes made to 62349c33410671a33d4041d50cf27de1d6bdd9cf.
* Revert "Revert "Merge branch 'master' of https://github.com/mogranjm/qmk_firmware""
This reverts commit eae54fb3be2c60dffd704261f84bab98c9e06f93.
* Added QWERTY support to the QFR_JM
Implemented variable default base layer from the Planck default keymap.
* Update README to reflect QWERTY support
Previously, this code was implemented in keymap.c, but I'm unaware of
someone with a different implementation of this particular hack. [If
someone has it, we can add another #ifdef in the future.]
* Added personal minivan keymap
more consistent layer setup
documentation!
slide some things around
more doc jiggling
* Small layout and documentation tweaks
Small documentation updates
dropped Makefile that for some reason was still in my branch
* found and removed extra makefile
* added bfake support as a subproject
also moved existing bmini stuff to a subproject
fixed columns
minor keymap update
making this a subproject
remove old stuff
got subproject stuff figured out
* travis was upset because a board didn't have a default keymap
This commit adds a new keycode `RGB_SMOD` which is the same as `RGB_MOD` (cycle through all modes),
but when it is used in combination with shift it will reverse the direction.
* - Fixed DK60 version in config.h
* - Updated dk60 readme with new QMK rules
* - Fixed wording in readme
* Added dbroqua layout for DZ60
I've also updated dz60.h to add "true HHKD" keymap definition (6U
spacebar).
With the default HHKB definition r_alt was not mapped and when I pressed
r_menu it was r_alt.
Regards
* First commit of the Terminus_Mini firmware and the DivergeJM version of the Nyquist firmware
* Fix terminus_mini & nyquist/DivergeJM readme files
Previously an outdated copy of the default readme. Updated to match the Nyquist/DivergeJM format (DivergeJM is a split 5x12 implementation of the terminus_mini layout)
* Update makefiles to rules.mk
Renamed both Makefiles to rules.mk, removed references to makefiles
* Updated rules.mk
Inadvertantly removed important code from the rules.mk in previous commit. This has been restored.
Also disabled Tap_Dance in both rules.mk files
* Moved terminus_mini to handwired
Realised that existing directory was not appropriate for the terminus_mini project, moved to handwired.
* New Frosty Flake layout for QFR TKL
Added a TKL layout for the Frosty Flake with a navigation cluster on LOWER under the left hand and a similarly functioning MOUSE layer that includes mouse navigation functionality.
* Add existing file
* Add new keyboard layout - initial commit
* Revised readme.md
* Clarified readme.md, reorganized keymap.c, and added license text.
* Fixing last incomplete commit
* Just a little code cleanup to make things more readable.
* Add carvac_dv keymap for mitosis
* Add mouse keys
* move backspace, etc, and fix tab
* remove commented-out functions in keymap
* Fix scroll buttons and add left/right scrolling
* Make num momentary, add comments, and clean up
* fix mouse scroll acceleration
* Add tab, remove bksp, move print screen
Having tab next to control and alt makes for much easier
alt-tabbing and ctrl-tabbing.
That displaced print screen, but I had never used the non-layer
backspace on the right hand, so I moved printscreen over there.
* - Fancy default PID and option for corresponding VID.
- Information about official VID/PID.
- Correct manufacturer name.
- NKRO enabled by default.
* Resolved build error with `#ifndef FORCE_NKRO`.
* Clone Nyquist code to Iris and rename
* Set keymap and pins
* Work in progress Iris default keymap
* Add Iris rev2
* Update Iris files to new build system
* Add lewisridden keymap
* Added section to example, detailing how to accomplish the
'quad-function' tap dance.
* Refactored TD documentation to clearly separate different complex
examples
Change-Id: Ifc1495d1142849c771418fdabc458c04c48311e6
* Address #1689 by using a formula to define the breathing curve and exposing defines to control the shape of the curve.
* Tweak the behavior of breathing for clueboard
* First commit of the Terminus_Mini firmware and the DivergeJM version of the Nyquist firmware
* Fix terminus_mini & nyquist/DivergeJM readme files
Previously an outdated copy of the default readme. Updated to match the Nyquist/DivergeJM format (DivergeJM is a split 5x12 implementation of the terminus_mini layout)
* Update makefiles to rules.mk
Renamed both Makefiles to rules.mk, removed references to makefiles
* Updated rules.mk
Inadvertantly removed important code from the rules.mk in previous commit. This has been restored.
Also disabled Tap_Dance in both rules.mk files
* Moved terminus_mini to handwired
Realised that existing directory was not appropriate for the terminus_mini project, moved to handwired.
* redo make args to use colons, better folder structuring system [skip ci]
* don't put spaces after statements - hard lessons in makefile development
* fix-up some other rules.mk
* give travis a chance
* reset KEYMAPS variable
* start converting keyboards to new system
* try making all with travis
* redo make args to use colons, better folder structuring system [skip ci]
* don't put spaces after statements - hard lessons in makefile development
* fix-up some other rules.mk
* give travis a chance
* reset KEYMAPS variable
* start converting keyboards to new system
* try making all with travis
* start to update readmes and keyboards
* look in keyboard directories for board.mk
* update visualizer rules
* fix up some other keyboards/keymaps
* fix arm board ld includes
* fix board rules
* fix up remaining keyboards
* reset layout variable
* reset keyboard_layouts
* fix remainging keymaps/boards
* update readmes, docs
* add note to makefile error
* update readmes
* remove planck keymap warnings
* update references and docs
* test out tarvis build stages
* don't use stages for now
* don't use stages for now
* add ymd96 base
currently not working correctly.
* Update
honestly not really sure what I've been doing but I'm just more or less brute forcing this until I can get the pcb schematic or something
* honestly just trying stuff out
* Update keymaps
Getting closer hopefully
* ymd96 works!
at least for me
* Update readme
* Update readme
* Update readme
* Adds support for multiple layouts. Adds custom keymap for "offset"
layout.
* Adds a tool to help detach the keyboard from the Linux HID driver before programming.
* Adds a tool to help detach the keyboard from the Linux HID driver before programming.
- a keyboard already in bootloader mode will now be detected
- if setting the keyboard to bootloader mode doesn't work, a hint will be printed on how to do so
- instead of failing instantly when no keyboard is found, the script will now wait up to 60 seconds (it retries every 5 seconds, up to 12 times)
At one time, "ez" and "infinity" may have been subprojects of a
unified "ergodox" project, but this is not currently the case. Running
`make ergodox-ez-default-teensy` (or similar), as the documentation
currently implies, does not work.
neue Datei: keyboards/lets_split/keymaps/DE_simple/config.h
neue Datei: keyboards/lets_split/keymaps/DE_simple/keymap.c
neue Datei: keyboards/lets_split/keymaps/DE_simple/rules.mk
* slight modifier changes; added plover and reusing jack's default planck keymap as the basis
* space is not shift when held anymore
* added fabian layout (based on jack's default)
* changed fabian layout (based on jack's default)
* changed fabian layout (based on jack's default)
* Fix mbsurfer let's split layout RGB indicators when both lower and raise are pressed
* Update mbsurfer let's split keymap with new RGB key codes for modes
* Clean up mbsurfer keymap matrix layout
Overall changes
===============
* Updated to work with QMK master.
* The `$` and `^` symbols on the number row were swapped on both the base and
the ADORE layers.
* The bracket tap-dance keys can now be used to input Japanese brackets, `「`
and `」` with a third tap.
* The second column of the top row on the right side will act as a "Social"
application selector on the `AppSel` layer.
* The third key on the same column will select a password manager.
* The `GUI` key will now launch `rofi` when triple-tapped.
Miscellaneous
=============
* The `👶` symbol can be entered with UCIS.
* The `👪` symbol can be entered with UCIS.
Tools
=====
* `tools/hid-commands` can now find the `Mstdn`, not just `Slack`, as the
"Slack"/chat app.
* `tools/hid-commands` can now find the Plex web app as a music/media player.
* `tools/hid-commands` now understands the "Social" application selector. It
raises the `Mstdn` and `Tweetdeck` windows, but keeps focus on the previous
window.
* `tools/hid-commands` now understands the "Social2" application selector, which
raises `Signal` and `Viber`, but keeps focus on the previous window.
* `tools/hid-commands` is now able to select a password manager (KeePass*).
* `tools/hid-commands` can now run `rofi` when receiving an `appsel_helper`
command (triggered by a triple-tapped `GUI` key).
Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
* initial clueboard_60 support
* LED lighting support
* fix the clueboard->clueboard_66 rename
* Add layout support to clueboard_60
* Fix the 60_iso layout so it's actually iso
* add a default keymap for AEK layout
* fix clueboard_17
* Fixup the ISO layouts
* Fix the `wait_ms()/wait_us()` definitions for chibios
* Fix up the wait_ms/wait_us hack. Reduce stack size.
* Add a missing #include "wait.h"
* commit files that should have already been comitted
* Support for KBP V60 Type R 60% keyboard
Support does not include in switch or underglow lighting for Polestar Edition.
* rename v60type_r to v60_type_r
* Remove old v60type_r
* Modify readme.md to adhere with QMK readme formatting.
tearing it down so that it can be rebuilt
fiddling with audio
big default config overhaul
apparently startup sounds work without the override now
readme!
readme fixes
readme tweaking
* Add yuuki keymap
Documentation is still a TODO and the keymap may not be final
* GRV on colon
* add KC_GRV to FN ESC
* hhkb ish
* hhkbish 2
* HHKBish and documentation
* Fix Markdown warnings
* typo
* phreed keymap added
This keymap moves many pinky keys to the center
* set to do what I want but LT() does not return to previous layer
* get overlays working
* get overlays working
* fix the readme
* fix the readme
* swapped the shift
* swapped the shift
* propagate mods
* clear special char on readme
* Implement sticky modifiers
* Change underglow based on sticky mod status
* Set RGB lights based on which mods are stickied
* Add controls for dimming RGB LEDs
* Only update RGB lights if modifiers have changed
* Use all LEDs to show modifier state
* Create default keymap for Viterbi
* Duplicate default layout as basis of my own
* Basic Colemak layer, just to practice flashing
* Add reset button so that we don't have to short out the reset button on the board to flash it.
* Symbols layer
* Navigation layer, and remove unused keys. Now usable, nice.
* Correct backspace for UK QWERTY mapping
* Small clarification in XD75RE readme instructions
* Use UK pipe so that I can type a pipe on a UK keyboard
* adding new layout for the planck that helps when coming from the pok3r
* Fixing the function layer
* Update readme.md
* Update keymap.c
Making some small adjustments
* Update keymap.c
switching GUI and Esc
* Update keymap.c
* changed 'infinity' to 'ergodox_infinity' and specified to be in the top-level directory as per recent changes to directory structure of QMK_firmware git repo
* accidently removed '-' in last line of readme
* add new RGB keycodes and clean up lets split keymap
* extraneous cases
* More cleanup and added macro
* one more macro
* cleaned up my planck keymap and added macros
* Transitioned planck keymap to new formatting / audio modes based on new default
* Remove extraneous newline in song list, add keycodes missed in previous commit
* error in graphical representation of keycodes
* Merge with upstream
* Finish merge
* Add new keymap
* Change use of KEYMAP macro
* Add Readme.md
* Fix link
* Clean up comments
* Raise on leading edge of keypress
* Add HOME/END keys as upper/lower on arrow-up/down
* Reduce .hex file size by turning off unneeded options
* Put digit keypad onto left hand upon RAISE; this will sometimes be preferable to double-hits of right hand
* Latest super latest version merge
* cbbrowne keymap for XD75re
* starting notes on XD75re keymap plans
* First draft of bottom row of QWERTY
* Switch my special bottom line over to QCENT
* Dunno
* Filling in wanted keys, bit by bit...
* Add copyright, extra macro
* Clean up comments, remove some experimental code I didn't like
* TODO plans for xd75re
* clean up keyboard layout
* QCENT2 is my new experiment for the main keyboard...
* Add a few more main layer keys, and modify LOWER to shift things outwards to conform with main layer
* Clean up RAISE layer to conform with main layer, remove QCENT layer as QCENT2 is the new thing
* More xd75 changes, now that I actually have it in hand
* shift keymap around, as original attempt was a bit too aggressive in keeping to the edges
* more revs to XD75
* Dropping parts of the centre keypad in favor of Keys I Really Need
* Improve documentation to conform with how builds are done now
* Improve documentation to conform with how builds are done now
* Add cbbrowne rules file as alternative to having the rules in Makefile
* Makefile not needed anymore for individual keymap
* Remove all Makefiles from the keyboards directory.
* update keymaps added in the last 8 days
* Ignore keyboard/keymap makefiles
* update hand_wire to reflect our new Makefile-less reality
* Update the make guide to reflect the new reality
* move planck keymap options to rules.mk
* update planck keymaps 4real
* trigger travis
* add back build_keyboard.mk
* restore changes to build_keyboard
* Allow the knight animation to be restricted to a portion of the LED strip
* Add keys for jumping directly to particular animation modes
* Remove orphaned break statements
* Tweak the `RGB_MODE` buttons so they cycle through the same mode.
* small indentation fix
* Add a new revision of the clueboard with 18 underlight LEDs
* Allow the knight animation to be restricted to a portion of the LED strip
* Add keys for jumping directly to particular animation modes
* Remove orphaned break statements
* Tweak the `RGB_MODE` buttons so they cycle through the same mode.
* small indentation fix
`avr-libc` is no longer, and it's called `avr-gcc` now. https://github.com/osx-cross/homebrew-avr
Also you need `gcc-arc-none-eabi` to be able to compile in my experience.
* copied mjt keymaps from archive
* All mjt boards now compile
* fixed jd45-mjt breathing
* Updates to fix SpaceFN but not tested yet.
* Still missing either spacebar or an adjacent keypress.
* Debugging rigged up for use with hid_listen.
* Reverted the default keymap to use tap_layer_key rather than custom. Moved custom approach to keymap_debug.c
* Fixed the lower-left side of the keymap, which needed more spacers due to the matrix being directly put into the array rather than using the keymap function.
* Cleaned up JD45 keymap that uses tapkey.
* Redid minivan keymap with numsym rather than raise/lower.
Untested.
* Created my MJT keymap for HHKB
Enabled dynamic macros and moved
somoe of the shortcuts around.
* Minor keymap fixes to make them compile without errors.
* Added home/end to right arrow cluster on DYN layer.
* Added more keys to fn and dyn layers.
* It wasn't using my custom layer last time somehow...? Now it will.
* Compiled and installed at end of day on 8/23
* Moved macros to FKEY layer because Adjust was too hard to get into and out of without some sort of feedback.
* Fixed volume controls... were reversed and disabled.
* Added F13-F15 back to fkeys layer in Minivan
* Created new Planck Keymap that uses the NumSym and FKeys layer approach like the Minivan.
* Removed DYN layer.
* Fixed diagram in planck numsym.
* Cleanup for pull request.
* Roadkit flip phone warning.
* Replaced PLAY_NOTES_ARRAY to PLAY_SONG
* reset the submodules
* checked out specific commits for submodules
* Removed debugging from JD45 shared config.h
* Moved custom rules.mk to apropriate keymap
Reset the shared rules.mk file.
* Trailing return issue in rules.mk
Gotta make for a smooth pull request :-)
* Mitosis music troubleshooting
Also updated the song playing function.
Does not work currently.
* Fixed mitosis audio
* Put mitosis/rules.mk back to QMK master
* copied mjt keymaps from archive
* All mjt boards now compile
* fixed jd45-mjt breathing
* Updates to fix SpaceFN but not tested yet.
* Still missing either spacebar or an adjacent keypress.
* Debugging rigged up for use with hid_listen.
* Reverted the default keymap to use tap_layer_key rather than custom. Moved custom approach to keymap_debug.c
* Fixed the lower-left side of the keymap, which needed more spacers due to the matrix being directly put into the array rather than using the keymap function.
* Cleaned up JD45 keymap that uses tapkey.
* Redid minivan keymap with numsym rather than raise/lower.
Untested.
* Created my MJT keymap for HHKB
Enabled dynamic macros and moved
somoe of the shortcuts around.
* Minor keymap fixes to make them compile without errors.
* Added home/end to right arrow cluster on DYN layer.
* Added more keys to fn and dyn layers.
* It wasn't using my custom layer last time somehow...? Now it will.
* Compiled and installed at end of day on 8/23
* Moved macros to FKEY layer because Adjust was too hard to get into and out of without some sort of feedback.
* Fixed volume controls... were reversed and disabled.
* Added F13-F15 back to fkeys layer in Minivan
* Created new Planck Keymap that uses the NumSym and FKeys layer approach like the Minivan.
* Removed DYN layer.
* Fixed diagram in planck numsym.
* Cleanup for pull request.
* Roadkit flip phone warning.
* Replaced PLAY_NOTES_ARRAY to PLAY_SONG
* reset the submodules
* checked out specific commits for submodules
* Removed debugging from JD45 shared config.h
* Moved custom rules.mk to apropriate keymap
Reset the shared rules.mk file.
* Trailing return issue in rules.mk
Gotta make for a smooth pull request :-)
* include variables and .h files as pp directives
* start layout compilation
* split ergodoxes up
* don't compile all layouts for everything
* might seg fault
* reset layouts variable
* actually reset layouts
* include rules.mk instead
* remove includes from rules.mk
* update variable setting
* load visualizer from path
* adds some more examples
* adds more layouts
* more boards added
* more boards added
* adds documentation for layouts
* use lowercase names for LAYOUT_
* add layout.json files for each layout
* add community folder, default keymaps for layouts
* touch-up default layouts
* touch-up layouts, some keyboard rules.mk
* update documentation for layouts
* fix up serial/i2c switches
Turns out that 3c and 3d are not reversed when splitting the right
shift in the way that the Mark I layout does. Reversing it here, rather
than in the generic satan.h to avoid breaking the other layouts.
Fix and issue with the original Sentraq S60-X not being compatible with 'default'. If 'default' shouldn't be changed, perhaps I can create an 'original' revision.
It looks like build_environment_setup.md got renamed to
getting_started_build_tools.md in this commit:
commit e6c638bed1
Author: skullY <skullydazed@gmail.com>
Date: Sat Aug 5 20:54:34 2017 -0700
Overhaul the Getting Started section and add a FAQ section
docs/{build_environment_setup.md => getting_started_build_tools.md} | 132 ++++++++++++++++++++++++++++++++++++-------------------------------------
This commit adjusts the links to match the new name.
Updated MiniDox split_util.h and eeprom files to reflect this change.
I recommend adding this to any split board that used these files, my changes will not effect them currently.
This adds the `ACTION_TAP_DANCE_DUAL_ROLE` helper, which makes it easy to have
keys that act as a key on the first tap, and as a layer toggle on the second.
Fixes#1532, reported by @Ptomerty.
Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
[Colemak Mod-DH](https://colemakmods.github.io/mod-dh/) layout for
users keeping an `azerty` layout configuration on their OS.
The symbols layers was done after analysing various programming
languages sources codes and should be close to optimal for typing
confort.
The let's split code used delays in its debouncing algorithm which
increases input latency. This commit copies and adapts the code from
`quantum/matrix.c` to lets_split's `matrix.c`.
This protocol breaks out "duplicate" keys into their own entry in the packet so that more complicated logic can be done on the software side, including support for additional languages and alternative theories.
Requires virtser; Allows QMK to speak the TX BOlt protocol used by stenography machines and software (such as Plover). The upside is that Plover can be configured to listen only to TX Bolt allow the keyboard to switch layers without need to enable/disable the Plover software, or to have a second non-Steno keyboard work concurrently.
* merge
* line ending stuff
* Added MiniDox keyboard folder / configs / and some keymaps
* Updated minidox rev1 config, and readme. Also updated that_canadian keymap to include RGB
* cleaned up that_canadian keymap comments
* Fixed RGB being enabled by default, now it must be turned on at the keymap level
This introduces a grep dependency, which I believe we didn't have
before, but it should be available and installed by default on all the
supported systems.
This is a setup that is very useful for me. It may or may not be for
you. I will use it in conjunction with the A5 overlayed sv_SE layout.
The layout is subject to change (in particular I'm thinking about adding
a macro recording feature), but it have not changed much the past year
or two so you can expect it to be stable enough to learn it.
A5: http://aoeu.info/s/dvorak/svorak
My xkb map: https://github.com/lindhe/dotfiles/blob/master/usr/share/X11/xkb/symbols/se-A5
The most major points:
======================
L0:
---
* Easily accessible F11 key for fullscreening
* Print screen
* Middle mouse button for X-paste
* Improved reachability of meta buttons (LCtrl, LALt, AltGr, LGui etc.)
* Cluster Page Up/Down + Home/End by the right thumb
* Vim-like arrow layout in right bottom row
* Set media layer toggle to right thumb (Enter)
* Set apostrophe on LCtl (putting it next to some other small
characters)
L1:
---
* Full function key layout
* Teensy button
L2:
---
* Improved media buttons layout (close by the jkl; Vim binding)
* Improved layout of emulated mouse buttons
LED behaviour to binary+CAPS
============================
The ErgoDox LEDs on this layout is using the two rightmost LEDs as the
two LSB in a two digit binary number, representing layer 0, 1, 2 and 3.
The leftmost byte/LED indicates CAPS status.
Instead of having all sendstring keycode mappings in the main quantum.c
file, give each one its own file in keymap_extras that can be #included
in a user's keymap. If one is included, it will define the appropriate
lookup tables and overwrite the weak definitions in quantum.c.
(Including more than one sendstring definition will fail at compile
time.)
Update @rai-suta's test keymap to match, as well as the documentation.
Refactor new-ish JIS_KEYCODE send_string implementation with existing
send_string
Reshuffle JIS in line with other alternative keycodes for sendstring,
and make them all accessible via compile-time options
Add a separate function to allow sending a string with a delay.
* Move Space Caded Parentheses to own layer
The space cadet parentheses where too much distracting. Therefore they are now on the function layer. I also added two more layers for also having angle brackets and curly braces on the shift keys forr better access.
Also updated the README
* Fixed SHIFT+Function key conflict
* Removed Angle Bracket and Curly Bracket layers, as they don't work corrrectly
*NOTE:* it might still be desirable to set the software layout to sv_SE in your
OS.
Swedish (sv_SE) Qwerty layout for ErgoDox, based on the Default configuration
I have tried making this as close of a match I could between the [default
ErgoDox EZ configuration](https://ergodox-ez.com/pages/our-firmware) and a
standard Swedish Qwerty layout.
Notable differences from default:
=================================
* There are three special character buttons (acute accent, circumflex/tilde and
apostrophe/asterisk) that don't have any buttons to map to naturally. I've put
these at other places:
* Acute accent (´) can be found in the lower left corner, conveniently
placed to reach for making an é.
* Apostrophe (') was put in the lower left corner, close to acute accent.
* Circumflex (^) and asterisk (*) was placed in the lower right corner.
* Tilde (~) and diaeresis (¨) I couldn't find a good place for, so I left
those out. I could only get the buttons to produce a single one of the
characters. How can I get it to work properly?
* The Alt button on right thumb was exchanged for AltGr (RAlt).
* I changed the backslash in the numpad (layer 1) for a minus. Thought it was
more sensible.
* I didn't find a good place for the "<>|" button, so that one was left out.
That is a problem that really needs to be resolved. Pipe can be found on layer
one, however.
* allow mod swapping for mod tap
* quick include
* fix the mod swapping
* make changes consistent with action code
* fix bug
* re-enable no gui, etc
* fix binary comps
* solid logic
* Added orthodox
* Modified readme
* Modified readme
* Modified readme
* Updated makefile
* Fixed keymap issues
* Modified serial communications to allow for over 8 columns
* Fixed sizeof command
* Fixed some typing issues
* Testing issue #1191 (n-column split i2c slave)
Based on initial OrthoDox (serial) config by @reddragond and others,
this attempts to add TWI (I2C) support.
Relevant: <https://github.com/qmk/qmk_firmware/issues/1191>
- per @ahtn recommendation, using memcpy for moving slave matrix
into slave sending buffer
- slave buffer has been enlarged using sizeof(matrix_row_t)
- note: i2c.h now includes matrix.h
- note: matrix.c includes <string.h>
* Added i2c keymap - right col still not working
* orthodox: re-added i2c keymap, based on serial
* orthodox / issue #1191: trying 9-bit serial
- orthodox serial protocol now sends 9 bits per row, instead of 16.
Technically it's using MATRIX_COLS, so it might work generically.
- ROW_MASK is #defined in serial.c to truncate the checksums to prevent
overflows causing false errors. This macro should be renamed if it's
kept.
* Revert "Fixed sizeof command"
This reverts commit f62a5b9939d6a9c0e442ec403de00c14431a55f9.
Changes had been made to the lets_split serial driver for testing which
mirrored the multi-byte-row changes made to support the orthodox. As the
lets_split does not require these changes, and new improvements had
been added to the orthodox port only, this commit reverts them.
Because the new code could potentially reduce latency over the serial
transport, it may be desirable to re-add in the future, by backporting
the current working orthodox code.
* orthodox: default serial keymap improvements
- formatting has been improved
- a few keys have been shifted, mainly in Raise and Lower layers,
to be more like the default Planck layout
- Now available: F12, Home, End, PgUp, PgDn, Media-Next, Media-Play
Still To Do:
- duplicate for TWI
- Alt modifier
- GUI modifier
* orthodox: failed attempt at 16b/row TWI
- duplicated updated serial keymap for "i2c"
- removed string.h/memcpy, instead
- hardcoded copying of six bytes per update
- still doesn't work; master reports interconnect errors on txled
* orthodox: adjusted default keymap
- this is applied to both 'serial' and 'i2c' keymaps
- Alt and GUI have been added, as they were missing
- comma and period persist across more layers; Home/PgUp and End/PgDn
have been moved slightly to accommodate
* orthodox: revert TWI support to minimum to debug
- disabled ssd1306 and hardware locking in build configuration
- increased TWI buffer from 0x10 to 0x20 bytes
- decreased TWI clock from 400000 to 100000
- removed hardcoded TWI multi-byte sending/receiving
An 'i2c' build of this was found to work on a rev1 Orthodox, although
slave-side col9 was understandably not working. When testing-time
permits, features will be gradually re-enabled towards getting the full
matrix supported over TWI.
* orthodox: TWI (i2c) is working, kludge for col9
The TWI interconnect ("i2c" in directories and build config) is now
working for the Orthodox, including the slave half's column #9.
This is intended as an interim solution, as it's a kludge, not a fix.
Rather than a working multi-byte implementation, the two col9 keys'
bits are packed-into and unpacked-from the two unused bits in row1.
Furthermore, the TWI clock constant has been reduced to 100000 from
400000, as testing revealed the higher value just didn't work.
Testing also found that (with this kludge) increasing the TWI buffer
was not necessary.
This commit leaves many commented-out lines in matrix.c from previous
testing, which will be removed in a future commit once the
interconnects' multi-byte problems have been debugged more thoroughly.
* orthodox: updated readme.md
The readme for the Orthodox now includes a description of the keyboard,
allusions to its author and availability, a linked photo, and links to
the evolving build guide and the current keymap on KLE.
This update has been prepared with /u/Deductivemonkee's assistance.
Added basic description of the keyboard and some build and configuration
instructions.
Also moved the RGB underlight modification instructions to the readme.
The previous default configuration and keymap was made for a Phantom
modified with RGB underlight.
This commit makes the default more in line with the "official"
configurations provided by the PCB.
The previous default have been moved to a separate keymap named
`rgbmod`. It has also been updated to better match the template keymap.
It's a little unclear what the style guidelines are for the QMK project.
But I figured that I should at least keep the indentation consistent
within the KMAC part.
Previously KEYMAP referred to the KEYMAP_ARROW layout and had 45 keys. It makes
more sense for the default keymap to be the 44 key layout, as is implied by the
name.
Additionally keymaps for all other known layouts have been added:
KEYMAP - base layout
KEYMAP_ARROW - additional key in bottom right
KEYMAP_COMMAND - additional key in bottom left
KEYMAP_ARROW_COMMAND - combination of KEYMAP_ARROW and KEYMAP_COMMAND
* Make submodules point to qmk
* Update uGFX to 2.7
* Use ugfx with custom fixes
* Fix the ChibiOs submodule commit hash
To match the hashes in the mabl/ChibiOS and therefore QMK repository.
* Add MIDI layer
* Respect brightness level on layer signalling
* Add hotkey in control layer for signalling state
* Update layout.png
* Remove image and replace it with imgur link
* SCKLCK is now SCROLLLOCK
Yes, with all three Ls
At least it doesn't have a random K anymore lol
* Removed strange mystery trailing numbers in the docs
* Fix layer LED signalling in magicmonty keymap
* Include the breathing modes in layer signalling
* Reverts mode to 1 as the other modes flicker
* Add Cursor keys on VIM positions and PAUSE to function layer
If a macro play key is inadvertently recorded in a dynamic macro
a loop is created and the macro will not terminate when played.
This should be prevented.
* Add 80ms delay for KC_CAPS when used as a tap key
Workaround for the macOS caps lock delay
* Revert "Increase TAPPING_TERM for the Clueboard"
This reverts commit a74e69e9fa.
* Add keymap for smt Clueboard (HHKB layout)
* Add readme for smt Clueboard (HHKB) keymap
* Flesh out the keymap a bit more to support Colemak & Dvorak
* Update README with layout image
Replacement controller for Filco Majestouch 2 104 key keyboard. BE
advises code will also work with the Black Petal controller - I don't
have one to test with. Tests working perfectly on my Filco.
More specifically, we save them and then place the `macro_end` pointer
before them so they are essentially ignored and the other macro may
freely overwrite them.
Right after the user initiates the macro recording, they usually need
to release some keys used to access the DYN_REC_START layers. It makes
sense to ignore them.
Note: The keys used to access the DYN_REC_STOP key are *not* ignored.
From the official docs:
```
Note: The official Debian and Ubuntu images automatically run apt-get clean, so explicit invocation is not required.
```
Also added ` && rm -rf /var/lib/apt/lists/*` as part of the install line which probably does what was intended (no need to make a new layer).
Added apt-get update to the RUN payload, as it should be part of the same layer.
Both are documented here: https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
Dynamic macro functionality is modified to check for `DYN_REC_STOP`, so
that macro recording can be stopped with a designated key combination
(e.g. `qs` or anything) instead of mandating the use of a `_DYN` layer.
`_DYN` layer stopping can still be done by passing `DYN_REC_STOP` within
`process_record_user()`:
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
uint16_t macro_kc = (keycode == MO(_DYN) ? DYN_REC_STOP : keycode);
if (!process_record_dynamic_macro(macro_kc, record)) {
return false;
}
return true;
}
Empirically, waiting for N consecutive identical scans as a debouncing
strategy doesn't work very well for the ErgoDox EZ where scans are very
slow compared to most keyboards. Instead, debounce the signals by
eagerly reporting a change as soon as one scan observes it, but then
ignoring further changes from that key for the next N scans.
This is implemented by keeping an extra matrix of uint8 countdowns, such
that only keys whose countdown is currently zero are eligible to change.
When we do observe a change, we bump that key's countdown to DEBOUNCE.
During each scan, every nonzero countdown is decremented.
With this approach to debouncing, much higher debounce constants are
tolerable, because latency does not increase with the constant, and
debounce countdowns on one key do not interfere with events on other
keys. The only negative effect of increasing the constant is that the
minimum duration of a keypress increases. Perhaps I'm just extremely
unlucky w.r.t. key switch quality, but I saw occasional bounces even
with DEBOUNCE=10; with 15, I've seen none so far. That's around 47ms,
which seems like an absolutely insane amount of time for a key to be
bouncy, but at least it works.
Using only one layer, and activating it with two keys at the moment.
As with previous comments, this isn't final, but is a good starting point for a one-handed keyboard, half a Planck-like ortholinear keyboard, or a sample to show a layout with a function layer.
There was a typo, so the attempted configuration proably didn't do
what it should have done. I think it left the pin floating, and
could cause the LCD problems issue-1230.
It turns out that the ChibiOS K20 SPI driver doesn't handle the
chip select, so it needs to be done manually. Acquiring the bus is
not enough since the pin was in the wrong mode. This is now fixed.
Also increase the frequency of the SPI from around 200kHz to nearly
20 Mhz.
No animation, display led statuses and layer name on the same screen
Don't display layer bitmap
Fully saturated colors for caps, less saturated ones normally
Added MOD_TAP aliases for keymap.c readability.
Updated README to document said changes.
Added additional Dvorak layer to make using the CMD key easier on Macs.
fixed issue where Default.c "function key" does not work (actually it's changing my LED steps). Changed layout to be more user friendly for people that use the standard spacebar milled top plate.
* Clarify the license for files we have signoff on
* Update against the currently signed off files
* Remove unused and not clearly licensed headers
* Replace an #endif I accidentally removed while resolving merge conflicts
As per Pramod's comment on stack overflow:
In C int foo() and int foo(void) are different functions. int foo()
accepts an arbitrary number of arguments, while int foo(void) accepts 0
arguments. In C++ they mean the same thing. I suggest that you use void
consistently when you mean no arguments.
Refactored Bluetooth support to make adding new Bluetooth modules
easier in the future.
* Remove `OUT_BLE` key from QMK's keymap. `OUT_BT` is all we need now
as there's no difference anymore.
* Made BLUETOOTH_ENABLE build option legacy as not to break existing
keymaps (Falls back to existing EZ Key support if on)
* Removed `ADAFRUIT_BLE_ENABLE` build option
* Created new build option `BLUETOOTH` with module option (Currently
`AdafruitEZKey` & `AdafruitBLE`)
* Moved all LUFA bluetooth key/mouse events under `BLUETOOTH_ENABLE`
ifdef with selected modules output.
This only applies to keymaps that has combined esc/grave. Here we call it theKEY.
Think about the motion when we do shift + theKEY (typing ~), or CMD + theKEY (switching window on MAC). Based on the original code, we must do following sequence: press shift -> press theKEY -> release theKEY -> release shift. However, it is very possible and natural that we do this stroke sequence instead: press shift -> press theKEY -> release shift -> release theKEY.
If we do the 2nd stroke sequence, the code will del_key(ESC) instead of (GRV) when we release theKEY. This caused some inconvenient issues and ghost typing.
By adding a flag, this issue is eliminated and will not affect any other functions.
A simple addition to the `install_dependencies` script which remaps the debian dependencies to their freebsd package-names. After a recursive clone and using gmake, I can successfully build all firmware from the root directory (minus some warnings generated by gcc-4.9.4 which I can procure on request). however there is a problem running tests.
Removed some unneeded keys from raise and lower layers
moved the + and = signs, backspace is now more intuitive
moved all the Function keys to CUSTOM layer
added ctrl alt del to CUSTOM layer
simplified the layout picture greatly
Update existing keymaps to enable MIDI_BASIC functionality. Also added
an option MIDI_ENABLE_STRICT to be strict about keycode use (which also
reduces memory footprint at runtime)
tone array:
text data bss dec hex filename
0 25698 0 25698 6462 satan_newsboytko.hex
0x6480 bytes written into 0x7000 bytes memory (89.73%).
note on array:
text data bss dec hex filename
0 25802 0 25802 64ca satan_newsboytko.hex
0x6500 bytes written into 0x7000 bytes memory (90.18%).
if you compare split_util.h with the original project by ahtn, the
address we look for isLeftHand config went from addr 7 to addr 10
(decimal). The EEP files were not updated.
EE_HANDS should not be enabled by default since it's more confusing for
most users
Added new keymap `Admiral Strokers` to the Satan keyboard. This is an
ISO based layout with tap for brackets/ curly on shft and ctl keys.
Furthermore, there is added arrows and media/volume/special/f-keys layer
on the TAB button when you hold.
The previous two options were COL2ROW, ROW2COL; this adds CUSTOM_MATRIX
to disable the built-in matrix scanning code.
Most notably, this obviates the need to set MATRIX_ROW_PINS or
MATRIX_COL_PINS.
since the keycode for a tap dance process gets process only after the
TAPPING_TERM timeout, you really only have ONESHOT_TIMEOUT -
TAPPING_TERM time to tap or double tap on the key. This fix save the
oneshot_mods into the action.state structure and applies the mods with
the keycode when it's registered. It also unregisters the mod when the
the tap dance process gets reset.
The oneshot cancellation code do not depend on the
action_tapping_process and since process_record get called via the
action_tapping_process logic moved the oneshot cancellation code into
the action_exec function just before the action_tapping_process call
Scenario:
Locking the KC_LSHIFT, and then using a tap dance key that registers a
S(KC_9) will unregister the KC_LSHIFT.
The tap dance or any keycode that is registered should not have the
side effect of cancelling a locked moditifier. We should be using a
similar logic as the TMK codes in tmk_core/comman/action.c:158.
A macro key can now be easily set to act as a modifier on hold, and
press a shifted key when tapped. Or to switch layers when held, and
again press a shifted key when tapped.
Various other helper defines have been created which send macros when
the key is pressed, released and tapped, cleaning up the
action_get_macro function inside keymap definitions.
The layer switching macros require a GCC extension - 'compound
statements enclosed within parentheses'. The use of this extension is
already present within the macro subsystem of this project, so its use
in this commit should not cause any additional issues.
MACRO_NONE had to be cast to a (macro_t*) to suppress compiler
warnings within some tapping macros.
* master:
Clarify license on abnt2 keymap (#1038)
replace jackhumbert with qmk
Add gitter image, start update to qmk org
Remove COLEMAK from preonic_keycodes enum
layer defines to enum
Update readme for smt Preonic keymap
Add smt keymap for Preonic
updated all the other keymaps to support the new changes.
fix: infinity60 keyboard was not using quantum features.
Compare Makefile with itself instead of using `--help`
In register_code16 and unregister_code16 we call register_code and
unregister_code twice, once for the mods and once for the keycode.
The (un)register_code have many check to see that keycode we have sent
however because we know that we are sending it a mods key, why not
just skip all of it and call (un)register_mods instead. This will skip
alot of checks and should speedup the loop a little.
the quantum matrix codes where not being initialized or/and called
so no feature of the quantum firmware could be used. These codes have
been added and now we can enjoy the quantum firmware goodness.
* Add HOME/END keys as upper/lower on arrow-up/down
* Reduce .hex file size by turning off unneeded options
* Put digit keypad onto left hand upon RAISE; this will sometimes be preferable to double-hits of right hand
* Moved duplicated defines out of inappropriate source files (matrix
pins in keymap subdirectory)
* Eliminated default keymap directory
* Hardcoded serial keymap to use serial defines and EE_CONFIG
* Hardcoded i2c keymap to use i2c defines
- Swiss German Ergodox layout:
Added ENTER key to left keyboard half on media layer
such that the enter key is available on both halves to
be able to flash both halves without an additional keyboard.
- Add Swiss German layout for Ergodox Infinity based on default
layout for Ergodox EZ.
- Minor changes in the event loop to prevent flashing display
background lights.
Since we can't read the real_mods and oneshot_mods static variable
directly within the update_user_visualizer_state
function (Threading and serial link). We are know storing the mods
states in the visualizer_keyboard_status_t structure. We can now
display the status of the modifier keys on the LCD display.
After setting a ONESHOT_TIMEOUT value, the oneshot layer state would
not expire without an event being triggered (key pressed). The reason
was that in the process_record function we would return priort to
execute the process_action function if it detected a NOEVENT cycle. The
process_action contained the codes to timeout the oneshot layer state.
The codes to clear the oneshot layer state have been move just in
front of where we check for the NOEVENT cycle in the process_record
function.
Removed Alt on base layer, replaced with Function layer.
Moved function keys to left hand. Added mouse keys to right hand on the function layer.
Moved middle click on gaming layer to be consistent with mouse layer.
Added macro _USER. Macro contents are not implemented yet.
new file: keyboards/ergodox/keymaps/ishigoya-jp/img/keyboard-layout-jpL.png
new file: keyboards/ergodox/keymaps/ishigoya-jp/img/keyboard-layout-numL.png
modified: keyboards/ergodox/keymaps/ishigoya-jp/keymap.c
new file: keyboards/ergodox/keymaps/ishigoya-jp/readme.md
Fix memory leaks by using stack instead of malloc
Reduce memory usage by having less temporary bufffers
Remove warnings by adding includes
Decrease code size by 608 bytes (mostly due to not linking malloc)
More robust handling of buffer overflows
Miscellaneous
=============
* `µ` can now be entered with UCIS.
* `™` can now be entered with UCIS.
Tools
=====
* `tools/hid-commands` can now find Banshee, and prefers it over Kodi.
* `tools/hid-commands` can now find Chrome too, not juts Chromium.
Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
There are a lot of PS/2 commands, some are vendor/device specific, so we
provide a weak ps2_mouse_init_user() to be implemented in each keyboard
that need it.
There are a lot of PS/2 commands, some are vendor/device specific, so we
provide a weak ps2_mouse_init_user() to be implemented in each keyboard
that need it.
There are now 3 potential locations to send HID reports:
1. USB
2. The bluefruit easy key
3. Adafruit BLE
Generally speaking, if USB is connected then we should prefer to
send the reports there; it is generally the best channel for this.
The bluefruit module has no feedback about bluetooth connectivity
so the code must speculatively send reports over both USB and bluetooth.
The BLE module has connectivity feedback. In general we want to
prefer to send HID reports over USB while connected there, even
if BLE is connected. Except that it is convenient to force them
over BLE while testing the implementation.
This policy has been extracted out into a where_to_send function
which returns a bitmask of which of the channels should be used.
This implements some helper functions that allow sending key reports
to an SPI based Bluetooth Low Energy module, such as the Adafruit
Feather 32u4 Bluefruit LE.
There is some plumbing required in lufa.c to enable this; that
is in a follow-on commit.
Unlike the arduino functions, these don't take abstract pin numbers,
they take pin labels like `B0`. Also, rather than taking very
generic parameter names, these take slightly more descriptive
enum values.
These improve the clarity of code that would otherwise be inscrutable
bit manipulation in tersely named port register names.
Adopt the macros for saving/restoring the interrupt state
that are provided by the avr gcc environment.
Removing intialization of the timer value; this shaves off
a few bytes because globals are default initialized to zero.
Define a default TAPPING_TERM in quantum.c, for keyboards that do not
have it set. Fixes the CI failure.
Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
When one holds a Space Cadet shift, to have it act as a shift, so that
mouse behaviour changes, when released without any other key pressed, it
still registers a paren. To remedy this, add a hold timeout: if the key
is held longer than TAPPING_TERM, it will not register the parens.
Fixes#884, with the side-effect of not being able to have parens
trigger the OS-side repeat anymore.
Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
Plover's steno support likes quasi-qwerty, and gaming likes qwerty,
and I like dvorak, so... what if I could have it all?
Signed-off-by: seebs <seebs@seebs.net>
At this point, I consider the batch scripts @IBNobody and I worked on to mostly be a failure. They've proven to be unreliable, too dependent on the environment they're being run in, and I've seen far too many examples of people having frustrating issues with them that I haven't been able to help them with. They can also produce misleading and confusing error messages. I've been pointing people to use the WSL for a while now. Eventually, I think we should make a proper replacement for the batch scripts, possibly with an environment in msys2. For now, the WSL method in Windows 10 is far more reliable, and is easy to set up.
I also cleaned up some things in the WSL instructions themselves.
new file: keyboards/lets_splitv2/Makefile
new file: keyboards/lets_splitv2/config.h
new file: keyboards/lets_splitv2/i2c.c
new file: keyboards/lets_splitv2/i2c.h
new file: keyboards/lets_splitv2/imgs/split-keyboard-i2c-schematic.png
new file: keyboards/lets_splitv2/imgs/split-keyboard-serial-schematic.png
new file: keyboards/lets_splitv2/keymaps/default/keymap.c
new file: keyboards/lets_splitv2/lets_split.c
new file: keyboards/lets_splitv2/lets_split.h
new file: keyboards/lets_splitv2/matrix.c
new file: keyboards/lets_splitv2/pro_micro.h
new file: keyboards/lets_splitv2/readme.md
new file: keyboards/lets_splitv2/serial.c
new file: keyboards/lets_splitv2/serial.h
new file: keyboards/lets_splitv2/split_util.c
new file: keyboards/lets_splitv2/split_util.h
new file: keyboards/maxipad/Makefile
new file: keyboards/maxipad/config.h
new file: keyboards/maxipad/keymaps/default/Makefile
new file: keyboards/maxipad/keymaps/default/config.h
new file: keyboards/maxipad/keymaps/default/keymap.c
new file: keyboards/maxipad/keymaps/default/readme.md
new file: keyboards/maxipad/maxipad.c
new file: keyboards/maxipad/maxipad.h
new file: keyboards/maxipad/readme.md
* upstream/master: (1239 commits)
Update ez.c
removes planck/rev3 temporarily
Move hand_swap_config to ez.c, removes error for infinity
Update Makefile
ergodox: Update algernon's keymap to v1.9
Added VS Code dir to .gitignore
Support the Pegasus Hoof controller.
[Jack & Erez] Simplifies and documents TO
add readme
use wait_ms instead of _delay_ms
add messenger
init keymap
Add example keymap
Adding whiskey_tango_foxtrot_capslock ergodox keymap
Unicode map framework. Allow unicode up to 0xFFFFF using separate mapping table
CIE 1931 dim curve
Apply the dim curve to the RGB output
Update the Cluecard readme files
Tune snake and knight intervals for Cluecard
Tunable RGB light intervals
...
Overall changes
===============
* `F12` was replaced by an `Fx` key, that activate the **Media** layer
as a one-shot layer, and also `Alt` as a one-shot modifier.
Base layer changes
==================
* The `Media Stop` key is now a tap-dance key, and resets the device for
programming on the fourth tap.
Miscellaneous
=============
* `π` can now be entered with UCIS.
* `🐁` can now be entered with UCIS.
Tools
=====
* The `tools/layer-notify` tool was removed, it was an example, which I
don't use.
`tools/hid-commands`
--------------------
* Now looks at the `DISABLE_APPSEL_START` environment value, and does
not display an AppSel notification if it is non-empty.
* Will attempt to re-program the keyboard when receiving a `reflash`
command.
* No longer tries to select Emacs 24 on `APPSEL_EMACS`, rather, it goes
for any Emacs.
* The `APPSEL_MUSIC` command now includes Kodi in the list too, as the
last choice.
Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
Rewrote QWERTY to make it a first-class citizen instead of just a glorified game layer.
Added a lot of keys to Extend layer to bring it in line with my Atreus.
Plenty of other changes too.
ADORE
-----
* Major rearrangements were made, to reduce pinky use, and to balance
out the hand usage.
Tools
-----
* The `hid-commands` tool will now display a notification when
the **AppSel** layer is triggered.
* The `log-to-heatmap.py` tool now treats the innermost keys on the
bottom row as thumb keys, as far as statistics are concerned.
Miscellaneous
-------------
* Fixed the **Steno** toggle key.
* My wife is now present on the keyboard too.
Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
Overall changes
===============
* The number row has been completely rearranged on both the **Base** and
the **ADORE** layers.
* The number/function key behavior was changed: function keys are now on
the **Media**.
* The `:`/`;` and `-`/`_` keys were put back to their thumb position on
the bottom row, on both the **Base** and **ADORE** layers.
* The bottom large keys on the inner side of each half now function as
[tmux](http://tmux.github.io/) keys: the left to send the prefix, the
right to send the `display-panes` key. The left also doubles as a GNU
screen prefix key, and sends `C-a` when double tapped.
* A number of functions, such as the **AppSel** layer, now require the
`hid-commands` tool to be running, with the output of `hid_listen`
being piped to it.
ADORE
=====
* `Y` and `X` have been swapped again.
Media/Navigation layer
======================
* The function keys are now on this layer.
* Mouse keys have been removed.
* Media start/stop/prev/next have been removed.
* `Print screen` has been removed.
* There is only one screen lock key now.
Heatmap
=======
* Fixed a few issues in the finger-stats calculation.
* The tool now also timestamps and saves all input lines to a logfile,
which it loads on start, allowing one to continue the collection after
upgrading the tool.
* The heatmap tool will now colorize the stats by default.
* The periodic stats are now printed in a more compact format.
Tools
=====
* Added a new tool, `tools/layer-notify` that listens to layer change
events on the HID console, and pops up a notification on layer
changes.
* Another new tool, `tools/text-to-log.py` has been added that converts
arbitrary text to a keylogger output, which can be fed to the heatmap
generator.
* A number of features have been moved to the `tools/hid-commands`
utility. These generally are OS dependent, and are easier to implement
on the software side.
Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
* Switched Tab and Super on the default layout
* Moved Shift on Extend to pinky
* Moved Caps Lock to upper right corner
* Moved gaming toggle to avoid blocking Escape
Instead of using a thumb shift, I was given the idea of using the pinky keys as dual-role keys that also send the Shift keypress.
This gives me a Shift key on each hand again, but it will make me learn to Shift with opposite hands after all.
Atreus: Removed home row Shift. It's under the thumb anyway. Also replaced dual modifier keys with macro keys (cut, copy, paste, undo).
Ergodox: Made Colemak the default layer instead of Dvorak. Also began the process of bringing it in line with the Atreus layout I've been working on.
This change adjusts the KEYMAP() function to provide a more visual representation of the key positions on the keyboard. Previously, keymaps have been defined directly using arrays for the Atreus keyboard. While this works, it doesn't utilize the helpful KEYMAP() function at all to allow the user to visually position the key codes for ease of editing. See the Ergodox-EZ KEYMAP() function and layouts for a great example of how this can work.
This change should not break any existing Atreus layouts. At the time of this commit, there are two existing layouts for the Atreus board, and neither use the KEYMAP() function.
QMK strives to be an inclusive and tolerant community. We welcome participation from anyone regardless of age, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, political belief, race, religion, or sexual identity and orientation.
> “A gentle word turns away wrath, but a harsh word stirs up anger.”
Our users, contributors, and collaborators are expected to treat each other with respect, to assume good intentions, and to gently correct, where possible, rather than react with escalation. Some examples of behavior we will not tolerate include, but is not limited to:
* The use of sexualized language or imagery
* Unwelcome advances, sexual or otherwise
* Insults or derogatory comments, or personal or political attacks
* Publishing others’ private information without explicit permission
* Other conduct which could reasonably be considered inappropriate in a professional setting
If someone is violating this Code of Conduct you may email hello@qmk.fm to bring your concern to the Members. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident.
# This guide has now been included in the main readme - please reference that one instead.
## Build Environment Setup
### Windows (Vista and later)
1. If you have ever installed WinAVR, uninstall it.
2. Install [MHV AVR Tools](https://infernoembedded.com/sites/default/files/project/MHV_AVR_Tools_20131101.exe). Disable smatch, but **be sure to leave the option to add the tools to the PATH checked**.
3. Install [MinGW](https://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download). During installation, uncheck the option to install a graphical user interface. **DO NOT change the default installation folder.** The scripts depend on the default location.
4. Clone this repository. [This link will download it as a zip file, which you'll need to extract.](https://github.com/jackhumbert/qmk_firmware/archive/master.zip) Open the extracted folder in Windows Explorer.
5. Double-click on the 1-setup-path-win batch script to run it. You'll need to accept a User Account Control prompt. Press the spacebar to dismiss the success message in the command prompt that pops up.
6. Right-click on the 2-setup-environment-win batch script, select "Run as administrator", and accept the User Account Control prompt. This part may take a couple of minutes, and you'll need to approve a driver installation, but once it finishes, your environment is complete!
7. Future build commands should be run from the standard Windows command prompt, which you can find by searching for "command prompt" from the start menu or start screen. Ignore the "MHV AVR Shell".
### Mac
If you're using [homebrew,](http://brew.sh/) you can use the following commands:
brew tap osx-cross/avr
brew install avr-libc
brew install dfu-programmer
This is the recommended method. If you don't have homebrew, [install it!](http://brew.sh/) It's very much worth it for anyone who works in the command line.
You can also try these instructions:
1. Install Xcode from the App Store.
2. Install the Command Line Tools from `Xcode->Preferences->Downloads`.
3. Install [DFU-Programmer][dfu-prog].
### Linux
Install AVR GCC, AVR libc, and dfu-progammer with your favorite package manager.
If you have any problems building the firmware, you can try using a tool called Vagrant. It will set up a virtual computer with a known configuration that's ready-to-go for firmware building. OLKB does NOT host the files for this virtual computer. Details on how to set up Vagrant are in the [VAGRANT_GUIDE file](VAGRANT_GUIDE.md).
## Verify Your Installation
1. If you haven't already, obtain this repository ([https://github.com/jackhumbert/qmk_firmware](https://github.com/jackhumbert/qmk_firmware)). You can either download it as a zip file and extract it, or clone it using the command line tool git or the Github Desktop application.
2. Open up a terminal or command prompt and navigate to the `qmk_firmware` folder using the `cd` command. The command prompt will typically open to your home directory. If, for example, you cloned the repository to your Documents folder, then you would type `cd Documents/qmk_firmware`. If you extracted the file from a zip, then it may be named `qmk_firmware-master` instead.
3. To confirm that you're in the correct location, you can display the contents of your current folder using the `dir` command on Windows, or the `ls` command on Linux or Mac. You should see several files, including `readme.md` and a `quantum` folder. From here, you need to navigate to the appropriate folder under `keyboards/`. For example, if you're building for a Planck, run `cd keyboards/planck`.
4. Once you're in the correct keyboard-specific folder, run the `make` command. This should output a lot of information about the build process. More information about the `make` command can be found below.
## Customizing, Building, and Deploying Your Firmware
### The Make command
The `make` command is how you compile the firmware into a .hex file, which can be loaded by a dfu programmer (like dfu-progammer via `make dfu`) or the [Teensy loader](https://www.pjrc.com/teensy/loader.html) (only used with Teensys). You can run `make` from the root (`/`), your keyboard folder (`/keyboards/<keyboard>/`), or your keymap folder (`/keyboards/<keyboard>/keymaps/<keymap>/`) if you have a `Makefile` there (see the example [here](/doc/keymap_makefile_example.mk)).
By default, this will generate a `<keyboard>_<keymap>.hex` file in whichever folder you run `make` from. These files are ignored by git, so don't worry about deleting them when committing/creating pull requests.
* The "root" (`/`) folder is the qmk_firmware folder, in which are `doc`, `keyboard`, `quantum`, etc.
* The "keyboard" folder is any keyboard project's folder, like `/keyboards/planck`.
* The "keymap" folder is any keymap's folder, like `/keyboards/planck/keymaps/default`.
Below is a list of the useful `make` commands in QMK:
*`make` - cleans automatically and builds your keyboard and keymap depending on which folder you're in. This defaults to the "default" layout (unless in a keymap folder), and Planck keyboard in the root folder
*`make keyboard=<keyboard>` - specifies the keyboard (only to be used in root)
*`make keymap=<keymap>` - specifies the keymap (only to be used in root and keyboard folder - not needed when in keymap folder)
*`make quick` - skips the clean step (cannot be used immediately after modifying config.h or Makefiles)
*`make dfu` - (requires dfu-programmer) builds and flashes the keymap to your keyboard once placed in reset/dfu mode (button or press `KC_RESET`). This does not work for Teensy-based keyboards like the ErgoDox EZ.
*`keyboard=` and `keymap=` are compatible with this
*`make all-keyboards` - builds all keymaps for all keyboards and outputs status of each (use in root)
*`make all-keyboards-default` - builds all default keymaps for all keyboards and outputs status of each (use in root)
*`make all-keymaps [keyboard=<keyboard>]` - builds all of the keymaps for whatever keyboard folder you're in, or specified by `<keyboard>`
*`make all-keyboards-quick`, `make all-keyboards-default-quick` and `make all-keymaps-quick [keyboard=<keyboard>]` - like the normal "make-all-*" commands, but they skip the clean steps
Other, less useful functionality:
*`make COLOR=false` - turns off color output
*`make SILENT=true` - turns off output besides errors/warnings
*`make VERBOSE=true` - outputs all of the avr-gcc stuff (not interesting)
### The Makefile
There are 3 different `make` and `Makefile` locations:
The root contains the code used to automatically figure out which keymap or keymaps to compile based on your current directory and commandline arguments. It's considered stable, and shouldn't be modified. The keyboard one will contain the MCU set-up and default settings for your keyboard, and shouldn't be modified unless you are the producer of that keyboard. The keymap Makefile can be modified by users, and is optional. It is included automatically if it exists. You can see an example [here](/doc/keymap_makefile_example.mk) - the last few lines are the most important. The settings you set here will override any defaults set in the keyboard Makefile. **It is required if you want to run `make` in the keymap folder.**
The keyboard `config.h` is included only if the keymap one doesn't exist. The format to use for your custom one [is here](/doc/keymap_config_h_example.h). If you want to override a setting from the parent `config.h` file, you need to do this:
```
#undef MY_SETTING
#define MY_SETTING 4
```c
For a value of `4` for this imaginary setting. So we `undef` it first, then `define` it.
You can then override any settings, rather than having to copy and paste the whole thing.
#Planck Advanced (but not too advanced) `cygwin` Users Guide
If you are a user of the [cygwin environment](https://cygwin.com) in Windows and want the freedom to use the latest tools available, then this is the guide for you. If compiling your own copy of the latest and greatest Gnu C Compiler makes you super happy, then this is the guide for you. If the command line make you smile, then this is the guide for you.
This guide was written step by step as I went through the process on a `Windows 10``x86_64` and a `Windows 7``amd k10` based system. This should be generally applicable to to any `Windows` environment with `cygwin`.
#####Do not skip steps. Do not move past a step until the previous step finishes successfully.
Based on [avr-libc installation guide](http://www.nongnu.org/avr-libc/user-manual/install_tools.html)
##Get the Required Packages
Download the `cygwin` setup ([x86_64](https://cygwin.com/setup-x86_64.exe)) and install the default system plus the following if they are not already selected:
The set of commands below will create a directory (`~/local/avr`) for the sources you compile to be installed on the machine and a directory (`~/src`) for these source files to be stored. The commands then download the sources of the needed packages and unpack them. Note: the expand commands are different depending on if the packages are offered as a `bz2` or `gz` archive
These commands will set up the install directory and the `PATH` variable, which will allow you to access your installed packages. Note: if you close the `cygwin` terminal window, you will need to rerun these commands, they are not permanent.
The following packages are required to be complied and installed in order to compile `gcc`. They are not sufficiently available through the `cygwin` package system, so we have to make them ourselves. They must be complied in this order because each one depends on the previous. Verfiy that for each package, `make check` returns all passing and no fails.
You can build and install a brand new `gcc` or you can use the one supplied by `cygwin`. This will take about 4-5 hours to compile (It is a "native build", so it does the entire build **3 times**. This takes a long while).
##Buliding `binutils`, `gcc`, and `avr-libc` for the AVR system
Now we can make the critical stuff for compiling our firmware: `binutils`, `gcc`, and `avr-libc` for the AVR architecture. These allow us to build and manipulate the firmware for the keyboard.
###Build `binutils` for AVR
If you plan to build and install `avr-gdb` also, use the `gdb` install at the end of this guide as it also builds the `binutils`
For building the `avr-libc`, we have to specify the host build system. In my case it is `x86_64-unknown-cygwin`. You can look for build system type in the `gcc` configure notes for the proper `--build` specification to pass when you configure `avr-libc`.
##Building 'dfu-programmer' for flashing the firmware via USB and installing the drivers
We can either build our own, or use the precomplied binaries. The precompiled binaries don't play well with `cygwin` so it is better to build them ourselves. The procedure for the precompiled binaries is included at the end of this guide.
### Build and Install the `libusb`
The `dfu-programmer` requires `libusb` so that it can interact with the USB system. These repos must be bootstrapped in order to create an appropriate `./configure` and `Makefile` for your system.
Type 'dfu-programmer --help' for a list of commands
'dfu-programmer --targets' to list supported target devices
```
If you are not getting the above result, you will not be able to flash the firmware!
###Install the USB drivers
The drivers are included in the windows binary version of [`dfu-programmer` 0.7.2](http://iweb.dl.sourceforge.net/project/dfu-programmer/dfu-programmer/0.7.2/dfu-programmer-win-0.7.2.zip).
The official drivers are found in [Atmel's `FLIP` installer](http://www.atmel.com/images/Flip%20Installer%20-%203.4.7.112.exe). Download and then install `FLIP`. Upon installation, the drivers will be found in `C:\Program Files (x86)\Atmel\Flip 3.4.7\usb`.
Then, from an **administrator-privileged**`Windows` terminal, run the following command (adjust the path for username, etc. as necessary) and accept the prompt that pops up:
```
C:\> pnputil -i -a C:\cygwin64\home\Kevin\src\dfu-programmer-win-0.7.2\dfu-prog-usb-1.2.2\atmel_usb_dfu.inf
or
C:\> pnputil -i -a "C:\Program Files (x86)\Atmel\Flip 3.4.7\usb\atmel_usb_dfu.inf"
```
This should be the result:
```
Microsoft PnP Utility
Processing inf : atmel_usb_dfu.inf
Successfully installed the driver on a device on the system.
Driver package added successfully.
Published name : oem104.inf
Total attempted: 1
Number successfully imported: 1
```
Alternatively, the `Windows` driver can be installed when prompted by `Windows` when the keyboard is attached. Do not let `Windows` search for a driver; specify the path to search for a driver and point it to the `atmel_usb_dfu.inf` file.
##Building and Flashing the Planck firmware!
If you did everything else right. This part should be a snap! Grab the latest sources from `github`, make the Plank firmware, then flash it.
If you do not get the above, you **did not** build the firmware, and you will have nothing to flash. If you have the fresh clone from `github`, it was probably something gone wrong in this install process, go check and see what didn't work and threw errors or what steps you might have missed.
But if everything went OK, you are ready to flash! Press the reset button on the bottom of the Planck, wait two seconds, then:
```
$ make dfu
```
.
.
.
profit!!!
##extra bits...
###Installing Precompiled `dfu-programmer` Binaries (not recommended for `cygwin`)
To install the `dfu-programmer` from the binaries, we must get if from [the `dfu-programmer` website](https://dfu-programmer.github.io/) ([0.7.2](http://iweb.dl.sourceforge.net/project/dfu-programmer/dfu-programmer/0.7.2/dfu-programmer-win-0.7.2.zip)).
Copy this file into your `cygwin` home\src directory. (For me, it is `C:\cygwin64\home\Kevin\src`), extract the files, move `dfu-programmer.exe` to `~/local/avr/bin`. Most obnoxiously, the `libusb0_x86.dll` and `libusb0.sys` need to be moved from `./dfu-prog-usb-1.2.2/x86/` to a directory in the `Windows``PATH` and the `cygwin``PATH`. This is because the `dfu-programmer` binary is `mingw` based, not `cygwin` based, so the `dlls` do not cooperate. I achieved acceptable pathing by moving the files to `C:\cygwin64\home\Kevin\local\avr\bin` Then, in a `WINDOWS` command prompt running (Adjusting your path for username, etc. as needed):
```
C:\> set PATH=%PATH%;C:\cygwin64\home\Kevin\local\avr\bin
```
Then, rename `libusb0_x86.dll` to `libusb0.dll`.
You can tell that you were successful by trying to execute 'dfu-programmer' from the 'cygwin' prompt:
```
$ which dfu-programmer
/home/Kevin/local/avr/bin/dfu-programmer
$ dfu-programmer
dfu-programmer 0.7.2
https://github.com/dfu-programmer/dfu-programmer
Type 'dfu-programmer --help' for a list of commands
'dfu-programmer --targets' to list supported target devices
```
If you are not getting the above result, you will not be able to flash the firmware!
- Try making sure your `PATH` variables are set correctly for both `Windows` and `cygwin`.
- Make sure the `dll` is named correctly.
- Do not extract it with `cygwin`'s `unzip` as it does not set the executable permission. If you did it anyway, do `chmod +x dfu-programmer.exe`.
- Still have problems? Try building it instead.
##Debugging Tools
These tools are for debugging your firmware, etc. before flashing. Theoretically, it can save your memory from wearing out. However, these tool do not work 100% for the Planck firmware.
### `gdb` for AVR
`gdb` has a simulator for AVR but it does not support all instructions (like WDT), so it immediately crashes when running the Planck firmware (because `lufa.c` disables the WDT in the first few lines of execution). But it can still be useful in debugging example code and test cases, if you know how to use it.
`simulavr` is an AVR simulator. It runs the complied AVR elfs. `simulavr` does not support the `atmega32u4` device... it does `atmega32` but that is not good enough for the firmware (no PORTE and other things), so you cannot run the Planck firmware. I use it to simulate ideas I have for features in separate test projects.
This one is a major pain in the butt because it has a lot of dependencies and it is buggy. I will do my best to explain it but... it was hard to figure out. A few things need to be changed in the 'Makefile' to make it work in `cygwin`.
Edit `src/Makefile.am` now so that `-no-undefined` is included (I did this by removing the SYS_MINGW conditional surrounding `libsim_la_LDFLAGS += -no-undefined` and `libsimulavr_la_LDFLAGS += -no-undefined \ libsimulavr_la_LIBADD += $(TCL_LIB)`. Also, `$(EXEEXT)` is added after `kbdgentables` in two places.
* Wire (strained for wiring to the Teensy, anything for the rows/columns)
* Soldering iron set at 600ºF or 315ºC (if temperature-controlled)
* Resin-cored solder (leaded or lead-free)
* Adequate ventilation/a fan
* Tweezers (optional)
* Wire cutters/snippers
## How the matrix works (why we need diodes)
The microcontroller (in this case, the Teensy 2.0) will be setup up via the firmware to send a logical 1 to the columns, one at a time, and read from the rows, all at once - this process is called matrix scanning. The matrix is a bunch of open switches that, by default, don't allow any current to pass through - the firmware will read this as no keys being pressed. As soon as you press one key down, the logical 1 that was coming from the column the keyswitch is attached to gets passed through the switch and to the corresponding row - check out the following 2x2 example:
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
| | | |
row0 ---(key0)---(key1) row0 ---(key0)---(key1)
| | | |
row1 ---(key2)---(key3) row1 ---(key2)---(key3)
The `x` represents that the column/row associated has a value of 1, or is HIGH. Here, we see that no keys are being pressed, so no rows get an `x`. For one keyswitch, keep in mind that one side of the contacts is connected to its row, and the other, its column.
When we press `key0`, `col0` gets connected to `row0`, so the values that the firmware receives for that row is `0b01` (the `0b` here means that this is a bit value, meaning all of the following digits are bits - 0 or 1 - and represent the keys in that column). We'll use this notation to show when a keyswitch has been pressed, to show that the column and row are being connected:
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
| | | |
x row0 ---(-+-0)---(key1) row0 ---(-+-0)---(key1)
| | | |
row1 ---(key2)---(key3) row1 ---(key2)---(key3)
We can now see that `row0` has an `x`, so has the value of 1. As a whole, the data the firmware receives when `key0` is pressed is
col0: 0b01
col1: 0b00
│└row0
└row1
A problem arises when you start pressing more than one key at a time. Looking at our matrix again, it should become pretty obvious:
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
| | | |
x row0 ---(-+-0)---(-+-1) x row0 ---(-+-0)---(-+-1)
| | | |
x row1 ---(key2)---(-+-3) x row1 ---(key2)---(-+-3)
Remember that this ^ is still connected to row1
The data we get from that is:
col0: 0b11
col1: 0b11
│└row0
└row1
Which isn't accurate, since we only have 3 keys pressed down, not all 4. This behavior is called ghosting, and only happens in odd scenarios like this, but can be much more common on a bigger keyboard. The way we can get around this is by placing a diode after the keyswitch, but before it connects to its row. A diode only allows current to pass through one way, which will protect our other columns/rows from being activated in the previous example. We'll represent a dioded matrix like this;
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
│ │ | │
(key0) (key1) (key0) (key1)
! │ ! │ ! | ! │
row0 ─────┴────────┘ │ row0 ─────┴────────┘ │
│ │ | │
(key2) (key3) (key2) (key3)
! ! ! !
row1 ─────┴────────┘ row1 ─────┴────────┘
In practical applications, the black line of the diode will be placed facing the row, and away from the keyswitch - the `!` in this case is the diode, where the gap represents the black line. A good way to remember this is to think of this symbol: `>|`
Now when we press the three keys, invoking what would be a ghosting scenario:
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
│ │ │ │
(┌─┤0) (┌─┤1) (┌─┤0) (┌─┤1)
! │ ! │ ! │ ! │
x row0 ─────┴────────┘ │ x row0 ─────┴────────┘ │
│ │ │ │
(key2) (┌─┘3) (key2) (┌─┘3)
! ! ! !
row1 ─────┴────────┘ x row1 ─────┴────────┘
Things act as they should! Which will get us the following data:
col0: 0b01
col1: 0b11
│└row0
└row1
The firmware can then use this correct data to detect what it should do, and eventually, what signals it needs to send to the OS.
## The actual hand-wiring
### Getting things in place
When starting this, you should have all of your stabilisers and keyswitches already installed (and optionally keycaps). If you're using a Cherry-type stabiliser (plate-mounted only, obviously), you'll need to install that before your keyswitches. If you're using Costar ones, you can installed them afterwards.
To make things easier on yourself, make sure all of the keyswitches are oriented the same way (if they can be - not all layouts support this). Despite this, it's important to remember that the contacts on the keyswitches are completely symmetrical. We'll be using the keyswitch's left side contact for wiring the rows, and the right side one for wiring the columns.
Get your soldering iron heated-up and collect the rest of the materials from the part list at the beginning of the guide. Place your keyboard so that the bottoms of the keyswitches are accessible - it may be a good idea to place it on a cloth to protect your keyswitches/keycaps.
Before continuing, plan out where you're going to place your Teensy. If you're working with a board that has a large (6.25u) spacebar, it may be a good idea to place it in-between switches against the plate. Otherwise, you may want to trim some of the leads on the keyswitches where you plan on putting it - this will make it a little harder to solder the wire/diodes, but give you more room to place the Teensy.
### Preparing the diodes
It's a little easier to solder the diodes in place if you bend them at a 90º angle immediately after the black line - this will help to make sure you put them on the right way (direction matters), and in the correct position. The diodes will look like this when bent (with longer leads):
┌─────┬─┐
───┤ │ ├─┐
└─────┴─┘ │
│
We'll be using the long lead at the bent end to connect it to the elbow (bent part) of the next diode, creating the row.
### Soldering the diodes
Starting at the top-left switch, place the diode (with tweezers if you have them) on the switch so that the diode itself is vertically aligned, and the black line is facing toward you. The straight end of the diode should be touching the left contact on the switch, and the bent end should be facing to the right and resting on the switch there, like this:
│o
┌┴┐ o
│ │ O
├─┤
└┬┘
└─────────────
Letting the diode rest, grab your solder, and touch both it and the soldering iron to the left contact at the same time - the rosin in the solder should make it easy for the solder to flow over both the diode and the keyswitch contact. The diode may move a little, and if it does, carefully position it back it place by grabbing the bent end of the diode - the other end will become hot very quickly. If you find that it's moving too much, using needle-nose pliers of some sort may help to keep the diode still when soldering.
The smoke that the rosin releases is harmful, so be careful not to breath it or get it in your eyes/face.
After soldering things in place, it may be helpful to blow on the joint to push the smoke away from your face, and cool the solder quicker. You should see the solder develop a matte (not shiney) surface as it solidifies. Keep in mind that it will still be very hot afterwards, and will take a couple minutes to be cool to touch. Blow on it will accelerate this process.
When the first diode is complete, the next one will need to be soldered to both the keyswitch, and the previous diode at the new elbow. That will look something like this:
│o │o
┌┴┐ o ┌┴┐ o
│ │ O │ │ O
├─┤ ├─┤
└┬┘ └┬┘
└────────────────┴─────────────
After completing a row, use the wire cutters to trim the excess wire from the tops of the diodes, and from the right side on the final switch. This process will need to completed for each row you have.
When all of the diodes are completely soldered, it's a good idea to quickly inspect each one to ensure that your solder joints are solid and sturdy - repairing things after this is possible, but more difficult.
### Soldering the columns
You'll have some options in the next process - it's a good idea to insulate the column wires (since the diodes aren't), but if you're careful enough, you can use exposed wires for the columns - it's not recommended, though. If you're using single-cored wire, stripping the plastic off of the whole wire and feeding it back on is probably the best option, but can be difficult depending on the size and materials. You'll want to leave parts of the wire exposed where you're going to be solder it onto the keyswitch.
If you're using stranded wire, it's probably easiest to just use a lot of small wires to connect each keyswitch along the column. It's possible to use one and melt through the insulation, but this isn't recommended, will produce even more harmful fumes, and can ruin your soldering iron.
Before beginning to solder, it helps to have your wire pre-bent (if using single-cored), or at least have an idea of how you're going to route the column (especially if you're making a staggered board). Where you go in particular doesn't matter too much, as we'll be basing our keymap definitions on how it was wired - just make sure every key in a particular row is in a unique column, and that they're in order from left to right.
If you're not using any insulation, you can try to keep the column wires elevated, and solder them near the tips of the keyswitch contacts - if the wires are sturdy enough, they won't short out to the row wiring an diodes.
### Wiring things to the Teensy
Now that the matrix itself is complete, it's time to connect what you've done to the Teensy. You'll be needing the number of pins equal to your number of columns + your number of rows. There are some pins on the Teensy that are special, like D6 (the LED on the chip), or some of the UART, SPI, I2C, or PWM channels, but only avoid those if you're planning something in addition to a keyboard. If you're unsure about wanting to add something later, you should have enough pins in total to avoid a couple.
The pins you'll absolutely have to avoid are: GND, VCC, AREF, and RST - all the others are usable and accessible in the firmware.
Place the Teensy where you plan to put it - you'll have to cut wires to length in the next step, and you'll want to make sure they reach.
Starting with the first column on the right side, measure out how much wire you'll need to connect it to the first pin on the Teensy - it helps to pick a side that you'll be able to work down, to keep the wires from overlapping too much. It may help to leave a little bit of slack so things aren't too tight. Cut the piece of wire, and solder it to the Teensy, and then the column - you can solder it anywhere along the column, but it may be easiest at the keyswitch. Just be sure the wire doesn't separate from the keyswitch when soldering.
As you move from column to column, it'll be helpful to write the locations of the pins down. We'll use this data to setup the matrix in the future.
When you're done with the columns, start with the rows in the same process, from top to bottom, and write them all down. Again, you can solder anywhere along the row, as long as it's after the diode - soldering before the diode (on the keyswitch side) will cause that row not to work.
As you move along, be sure that the Teensy is staying in place - recutting and soldering the wires is a pain!
### Getting some basic firmware set-up
From here, you should have a working keyboard with the correct firmware. Before we attach the Teensy permanently to the keyboard, let's quickly get some firmware loaded onto the Teensy so we can test each keyswitch.
To start out, download [the firmware](https://github.com/jackhumbert/qmk_firmware/) - we'll be using my (Jack's) fork of TMK called QMK/Quantum. We'll be doing a lot from the Terminal/command prompt, so get that open, along with a decent text editor like [Sublime Text](http://www.sublimetext.com/).
The first thing we're going to do is create a new project using the script in the root directory of the firmware. In your terminal, run this command with `<project_name>` replaced by the name of your project - it'll need to be different from any other project in the `keyboards/` folder:
util/new_project.sh <project_name>
You'll want to navigate to the `keyboards/<project_name>/` folder by typing, like the print-out from the script specifies:
cd keyboards/<project_name>
#### config.h
The first thing you're going to want to modify is the `config.h` file. Find `MATRIX_ROWS` and `MATRIX_COLS` and change their definitions to match the dimensions of your keyboard's matrix.
Farther down are `MATRIX_ROW_PINS` and `MATRIX_COL_PINS`. Change their definitions to match how you wired up your matrix (looking from the top of the keyboard, the rows run top-to-bottom and the columns run left-to-right). Likewise, change the definition of `UNUSED_PINS` to match the pins you did not use (this will save power).
#### \<project_name\>.h
The next file you'll want to look at is `<project_name>.h`. You're going to want to rewrite the `KEYMAP` definition - the format and syntax here is extremely important, so pay attention to how things are setup. The first half of the definition are considered the arguments - this is the format that you'll be following in your keymap later on, so you'll want to have as many k*xy* variables here as you do keys. The second half is the part that the firmware actually looks at, and will contain gaps depending on how you wired your matrix.
We'll dive into how this will work with the following example. Say we have a keyboard like this:
┌───┬───┬───┐
│ │ │ │
├───┴─┬─┴───┤
│ │ │
└─────┴─────┘
This can be described by saying the top row is 3 1u keys, and the bottom row is 2 1.5u keys. The difference between the two rows is important, because the bottom row has an unused column spot (3 v 2). Let's say that this is how we wired the columns:
┌───┬───┬───┐
│ ┋ │ ┋ │ ┋ │
├─┋─┴─┬─┴─┋─┤
│ ┋ │ ┋ │
└─────┴─────┘
The middle column is unused on the bottom row in this example. Our `KEYMAP` definition would look like this:
#define KEYMAP( \
k00, k01, k02, \
k10, k11, \
) \
{ \
{ k00, k01, k02 }, \
{ k10, KC_NO, k11 }, \
}
Notice how the top half is spaced to resemble our physical layout - this helps us understand which keys are associated with which columns. The bottom half uses the keycode `KC_NO` where there is no keyswitch wired in. It's easiest to keep the bottom half aligned in a grid to help us make sense of how the firmware actually sees the wiring.
Let's say that instead, we wired our keyboard like this (a fair thing to do):
┌───┬───┬───┐
│ ┋ │ ┋│ ┋ │
├─┋─┴─┬┋┴───┤
│ ┋ │┋ │
└─────┴─────┘
This would require our `KEYMAP` definition to look like this:
#define KEYMAP( \
k00, k01, k02, \
k10, k11, \
) \
{ \
{ k00, k01, k02 }, \
{ k10, k11, KC_NO }, \
}
Notice how the `k11` and `KC_NO` switched places to represent the wiring, and the unused final column on the bottom row. Sometimes it'll make more sense to put a keyswitch on a particular column, but in the end, it won't matter, as long as all of them are accounted for. You can use this process to write out the `KEYMAP` for your entire keyboard - be sure to remember that your keyboard is actually backwards when looking at the underside of it.
#### keymaps/default.c
This is the actual keymap for your keyboard, and the main place you'll make changes as you perfect your layout. `default.c` is the file that gets pull by default when typing `make`, but you can make other files as well, and specify them by typing `make KEYMAP=<variant>`, which will pull `keymaps/<variant>.c`.
The basis of a keymap is its layers - by default, layer 0 is active. You can activate other layers, the highest of which will be referenced first. Let's start with our base layer.
Using our previous example, let's say we want to create the following layout:
┌───┬───┬───┐
│ A │ 1 │ H │
├───┴─┬─┴───┤
│ TAB │ SPC │
└─────┴─────┘
This can be accomplished by using the following `keymaps` definition:
Note that the layout of the keycodes is similar to the physical layout of our keyboard - this make it much easier to see what's going on. A lot of the keycodes should be fairly obvious, but for a full list of them, check out [tmk_code/doc/keycode.txt](https://github.com/jackhumbert/qmk_firmware/blob/master/tmk_core/doc/keycode.txt) - there are also a lot of aliases to condense your keymap file.
It's also important to use the `KEYMAP` function we defined earlier - this is what allows the firmware to associate our intended readable keymap with the actual wiring.
#### Compiling your firmware
After you've written out your entire keymap, you're ready to get the firmware compiled and onto your Teensy. Before compiling, you'll need to get your [development environment set-up](/doc/BUILD_GUIDE.md) - you can skip the dfu-programmer instructions, but you'll need to download and install the [Teensy Loader](https://www.pjrc.com/teensy/loader.html) to get the firmware on your Teensy.
Once everything is installed, running `make` in the terminal should get you some output, and eventually a `<project_name>.hex` file in that folder. If you're having trouble with this step, see the end of the guide for the trouble-shooting section.
Once you have your `<project_name>.hex` file, open up the Teensy loader application, and click the file icon. From here, navigate to your `QMK/keyboards/<project_name>/` folder, and select the `<project_name>.hex` file. Plug in your keyboard and press the button on the Teensy - you should see the LED on the device turn off once you do. The Teensy Loader app will change a little, and the buttons should be clickable - click the download button (down arrow), and then the reset button (right arrow), and your keyboard should be ready to go!
#### Testing your firmware
Carefully flip your keyboard over, open up a new text document, and try typing - you should get the characters that you put into your keymap. Test each key, and note the ones that aren't working. Here's a quick trouble-shooting guide for non-working keys:
0. Flip the keyboard back over and short the keyswitch's contacts with a piece wire - this will eliminate the possibility of the keyswitch being bad and needing to be replaced.
1. Check the solder points on the keyswitch - these need to be plump and whole. If you touch it with a moderate amount of force and it comes apart, it's not strong enough.
2. Check the solder joints on the diode - if the diode is loose, part of your row may register, while the other may not.
3. Check the solder joints on the columns - if your column wiring is loose, part or all of the column may not work.
4. Check the solder joints on both sides of the wires going to/from the Teensy - the wires need to be fully soldered and connect to both sides.
5. Check the <project_name>.h file for errors and incorrectly placed `KC_NO`s - if you're unsure where they should be, instead duplicate a k*xy* variable.
6. Check to make sure you actually compiled the firmware and flashed the Teensy correctly. Unless you got error messages in the terminal, or a pop-up during flashing, you probably did everything correctly.
If you've done all of these things, keep in mind that sometimes you might have had multiple things affecting the keyswitch, so it doesn't hurt to test the keyswitch by shorting it out at the end.
#### Securing the Teensy, finishing your hardware, getting fancier firmware
Now that you have a working board, it's time to get things in their permanent positions. I've often used liberal amounts of hot glue to secure and insulate things, so if that's your style, start spreading that stuff like butter. Otherwise, double-sided tape is always an elegant solution, and electrical tape is a distant second. Due to the nature of these builds, a lot of this part is up to you and how you planned (or didn't plan) things out.
There are a lot of possibilities inside the firmware - check out the [readme](https://github.com/jackhumbert/qmk_firmware/blob/master/readme.md) for a full feature list, and dive into the different project (Planck, Ergodox EZ, etc) to see how people use all of them. You can always stop by [the OLKB subreddit for help!](http://reddit.com/r/olkb)
1. Install [MHV AVR Tools](https://infernoembedded.com/sites/default/files/project/MHV_AVR_Tools_20131101.exe). Disable smatch, but **be sure to leave the option to add the tools to the PATH checked**.
2. Install [MinGW](https://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download). During installation, uncheck the option to install a graphical user interface. **DO NOT change the default installation folder.** The scripts depend on the default location.
3. Clone this repository. [This link will download it as a zip file, which you'll need to extract.](https://github.com/jackhumbert/qmk_firmware/archive/master.zip) Open the extracted folder in Windows Explorer.
4. Right-click on the 1-setup-path-win batch script, select "Run as administrator", and accept the User Account Control prompt. Press the spacebar to dismiss the success message in the command prompt that pops up.
5. Right-click on the 2-setup-environment-win batch script, select "Run as administrator", and accept the User Account Control prompt. This part may take a couple of minutes, and you'll need to approve a driver installation, but once it finishes, your environment is complete!
### Mac
If you're using homebrew, you can use the following commands:
brew tap osx-cross/avr
brew install avr-libc
brew install dfu-programmer
Otherwise, these instructions will work:
1. Install Xcode from the App Store.
2. Install the Command Line Tools from `Xcode->Preferences->Downloads`.
3. Install [DFU-Programmer][dfu-prog].
### Linux
1. Install AVR GCC with your favorite package manager.
2. Install [DFU-Programmer][dfu-prog].
Note that, since it will be directly accessing USB hardware, the
`dfu-programmer` program needs to be run as root.
## Verify Your Installation
1. Clone the following repository: https://github.com/jackhumbert/qmk_firmware
2. Open a Terminal and `cd` into `qmk_firmware/keyboards/planck`
3. Run `make`. This should output a lot of information about the build process.
## Using the built-in functions
Here is a list of some of the functions available from the command line:
*`make clean`: clean the environment - may be required in-between builds
*`make`: compile the code
*`make KEYMAP=<keymap>`: compile with the extended keymap file `extended_keymaps/extended_keymap_<keymap>.c`
*`make dfu`: build and flash the layout to the PCB
*`make dfu-force`: build and force-flash the layout to the PCB (may be require for first flash)
Generally, the instructions to flash the PCB are as follows:
1. Make changes to the appropriate keymap file
2. Save the file
3.`make clean`
4. Press the reset button on the PCB/press the key with the `RESET` keycode
5.`make <arguments> dfu` - use the necessary `KEYMAP=<keymap>` and/or `COMMON=true` arguments here.
## Troubleshooting
If you see something like this
0 [main] sh 13384 sync_with_child: child 9716(0x178) died before initialization with status code 0xC0000142
440 [main] sh 13384 sync_with_child: *** child state waiting for longjmp
after running 'make' on Windows than you are encountering a very popular issue with WinAVR on Windows 8.1 and 10.
You can easily fix this problem by replacing msys-1.0.dll in WinAVR/utils/bin with [this one](http://www.madwizard.org/download/electronics/msys-1.0-vista64.zip).
Restart your system and everything should work fine!
make (e=2): The system cannot find the file specified.
make: *** [dfu] Error 2
when trying to 'make dfu' on Windows you need to copy the dfu-programmer.exe to qmk_firmware/keyboards/planck.
## Quantum MK Firmware
### Keymap
Unlike the other keymaps, prefixing the keycodes with `KC_` is required. A full list of the keycodes is available [here](https://github.com/jackhumbert/qmk_firmware/blob/master/tmk_core/doc/keycode.txt). For the keycodes available only in the extended keymap, see this [header file](https://github.com/jackhumbert/qmk_firmware/blob/master/quantum/keymap_common.h).
You can use modifiers with keycodes like this:
LCTL(KC_C)
Which will generate Ctrl+c. These are daisy-chainable, meaning you can do things like:
LCTL(LALT(KC_C))
That will generate Ctrl+Alt+c. The entire list of these functions is here:
*`LCTL()`: Left control
*`LSFT()` / `S()`: Left shift
*`LALT()`: Left alt/opt
*`LGUI()`: Left win/cmd
*`RCTL()`: Right control
*`RSFT()`: Right shift
*`RALT()`: Right alt/opt
*`RGUI()`: Right win/cmd
`S(KC_1)`-like entries are useful in writing keymaps for the Planck.
### Other keycodes
A number of other keycodes have been added that you may find useful:
*`CM_<key>`: the Colemak equivalent of a key (in place of `KC_<key>`), when using Colemak in software (`CM_O` generates `KC_SCLN`)
*`RESET`: jump to bootloader for flashing (same as press the reset button)
*`BL_STEP`: step through the backlight brightnesses
*`BL_<0-15>`: set backlight brightness to 0-15
*`BL_DEC`: lower the backlight brightness
*`BL_INC`: raise the backlight brightness
*`BL_TOGG`: toggle the backlight on/off
### Function layers
The extended keymap extends the number of function layers from 32 to the near-infinite value of 256. Rather than using `FN<num>` notation (still available, but limited to `FN0`-`FN31`), you can use the `FUNC(<num>)` notation. `F(<num>)` is a shortcut for this.
The function actions are unchanged, and you can see the full list of them [here](https://github.com/jackhumbert/tmk_keyboard/blob/master/common/action_code.h). They are explained in detail [here](https://github.com/jackhumbert/tmk_keyboard/blob/master/doc/keymap.md#2-action).
### Macros
Macros have been setup in the `keymaps/keymap_default.c` file so that you can use `M(<num>)` to access a macro in the `action_get_macro` section on your keymap. The switch/case structure you see here is required, and is setup for `M(0)` - you'll need to copy and paste the code to look like this (e.g. to support `M(3)`):
switch(id) {
case 0:
return MACRODOWN(TYPE(KC_A), END);
break;
case 1:
return MACRODOWN(TYPE(KC_B), END);
break;
case 2:
return MACRODOWN(TYPE(KC_C), END);
break;
case 3:
return MACRODOWN(TYPE(KC_D), END);
break;
}
return MACRO_NONE;
`MACRODOWN()` is a shortcut for `(record->event.pressed ? MACRO(__VA_ARGS__) : MACRO_NONE)` which tells the macro to execute when the key is pressed. Without this, the macro will be executed on both the down and up stroke.
ACSR Analog Comparator Control and Status Register
To disable Analog Comparator
ACSR = 0x80;
or
ACSR &= ~_BV(ACIE);
ACSR |= _BV(ACD);
ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is
switched off. This bit can be set at any time to turn off the Analog
Comparator. This will reduce power consumption in Active and Idle mode.
When changing the ACD bit, the Analog Comparator Interrupt must be disabled
by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when
the bit is changed.
DIDR1 Digital Input Disable Register 1
AIN1D
AIN0D
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corresponding PIN Register bit will always read as zero when this bit is set. When an analog signal is applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.
**GPLv2** or later. Some protocol files are under **Modified BSD License**.
Third party libraries like LUFA, PJRC and V-USB have their own license respectively.
Build Firmware and Program Controller
-------------------------------------
See [build environment setup](/readme.md#build-environment-setup), or the readme in the particular keyboards/* folder.
Change your keymap
------------------
See [doc/keymap.md](tmk_core/doc/keymap.md).
Magic Commands
--------------
To see help press `Magic` + `H`.
`Magic` key combination is `LShift` + `RShift` in many project, but `Power` key on ADB converter.
`Magic` keybind can be vary on each project, check `config.h` in project directory.
Following commands can be also executed with `Magic` + key. In console mode `Magic` keybind is not needed.
----- Command Help -----
c: enter console mode
d: toggle debug enable
x: toggle matrix debug
k: toggle keyboard debug
m: toggle mouse debug
v: print device version & info
t: print timer count
s: print status
e: print eeprom config
n: toggle NKRO
0/F10: switch to Layer0
1/F1: switch to Layer1
2/F2: switch to Layer2
3/F3: switch to Layer3
4/F4: switch to Layer4
PScr: power down/remote wake-up
Caps: Lock Keyboard(Child Proof)
Paus: jump to bootloader
Boot Magic Configuration - Virtual DIP Switch
---------------------------------------------
Boot Magic are executed during boot up time. Press Magic key below then plug in keyboard cable.
Note that you must use keys of **Layer 0** as Magic keys. These settings are stored in EEPROM so that retain your configure over power cycles.
To avoid configuring accidentally additive salt key `KC_SPACE` also needs to be pressed along with the following configuration keys. The salt key is configurable in `config.h`. See [tmk_core/common/bootmagic.h](tmk_core/common/bootmagic.h).
#### General
- Skip reading EEPROM to start with default configuration(`ESC`)
- Clear configuration stored in EEPROM to reset configuration(`Backspace`)
#### Bootloader
- Kick up Bootloader(`B`)
#### Debug
- Debug enable(`D`)
- Debug matrix enable(`D`+`X`)
- Debug keyboard enable(`D`+`K`)
- Debug mouse enable(`D`+`M`)
#### Keymap
- Swap Control and CapsLock(`Left Control`)
- Change CapsLock to Control(`Caps Lock`)
- Swap LeftAlt and Gui(`Left Alt`)
- Swap RightAlt and Gui(`Right Alt`)
- Disable Gui(`Left Gui`)
- Swap Grave and Escape(`Grave`)
- Swap BackSlash and BackSpace(`Back Slash`)
- Enable NKRO on boot(`N`)
#### Default Layer
- Set Default Layer to 0(`0`)
- Set Default Layer to 1(`1`)
- Set Default Layer to 2(`2`)
- Set Default Layer to 3(`3`)
- Set Default Layer to 4(`4`)
- Set Default Layer to 5(`5`)
- Set Default Layer to 6(`6`)
- Set Default Layer to 7(`7`)
Mechanical Locking support
--------------------------
This feature makes it possible for you to use mechanical locking switch for `CapsLock`, `NumLock`
or `ScrollLock`. To enable this feature define these macros in `config.h` and use `KC_LCAP`, `KC_LN
UM` or `KC_LSCR` in keymap for locking key instead of normal `KC_CAPS`, `KC_NLCK` or `KC_SLCK`. Res
ync option tries to keep switch state consistent with keyboard LED state.
#define LOCKING_SUPPORT_ENABLE
#define LOCKING_RESYNC_ENABLE
Start Your Own Project
-----------------------
**TBD**
Debugging
--------
Use PJRC's `hid_listen` to see debug messages. You can use the tool for debug even if firmware use LUFA stack.
You can use xprintf() to display debug info on `hid_listen`, see `tmk_core/common/xprintf.h`.
Files and Directories
-------------------
### Top
* tmk_core/ - core library
* keyboards/ - keyboard projects
* converter/ - protocol converter projects
* doc/ - documents
Coding Style
-------------
- Doesn't use Tab to indent, use 4-spaces instead.
Other Keyboard Firmware Projects
------------------
You can learn a lot about keyboard firmware from these. See [doc/other_projects.md](tmk_core/doc/other_projects.md).
This project includes a Vagrantfile that will allow you to build a new firmware for your keyboard very easily without major changes to your primary operating system. This also ensures that when you clone the project and perform a build, you have the exact same environment as anyone else using the Vagrantfile to build. This makes it much easier for people to help you troubleshoot any issues you encounter.
## Requirements
Using the `/Vagrantfile` in this repository requires you have [Vagrant](http://www.vagrantup.com/) as well as [VirtualBox](https://www.virtualbox.org/) (or [VMware Workstation](https://www.vmware.com/products/workstation) and [Vagrant VMware plugin](http://www.vagrantup.com/vmware) but the (paid) VMware plugin requires a licensed copy of VMware Workstation/Fusion).
*COMPATIBILITY NOTICE* Certain versions of Virtualbox 5 appear to have an incompatibility with the Virtualbox extensions installed in the boxes in this Vagrantfile. If you encounter any issues with the /vagrant mount not succeeding, please upgrade your version of Virtualbox to at least 5.0.12.
Other than having Vagrant and Virtualbox installed and possibly a restart of your computer afterwards, you can simple run a 'vagrant up' anywhere inside the folder where you checked out this project and it will start a Linux virtual machine that contains all the tools required to build this project. There is a post Vagrant startup hint that will get you off on the right foot, otherwise you can also reference the build documentation below.
Build Firmware and Program Controller
-------------------------------------
See [/doc/BUIDE_GUIDE.md](/doc/BUILD_GUIDE.md), or the readme in the particular keyboards/* folder.
Change your keymap
------------------
See [/doc/keymap.md](/doc/keymap.md).
## Flashing the firmware
The "easy" way to flash the firmware is using a tool from your host OS like the Teensy programming app. [ErgoDox EZ](/keyboards/ergodox/readme.md) gives a great example.
If you want to program via the command line you can uncomment the ['modifyvm'] lines in the Vagrantfile to enable the USB passthrough into Linux and then program using the command line tools like dfu-util/dfu-programmer or you can install the Teensy CLI version.
# How keys are registered, and interpreted by computers
In this file, you can will learn the concepts of how keyboards work over USB,
and you'll be able to better understand what you can expect from changing your
firmware directly.
## Schematic view
Whenever you type on 1 particular key, here is the chain of actions taking
place:
``` text
+------+ +-----+ +----------+ +----------+ +----+
| User |-------->| Key |------>| Firmware |----->| USB wire |---->| OS |
+------+ +-----+ +----------+ +----------+ |----+
```
This scheme is a very simple view of what's going on, and more details follow
in the next sections.
## 1. You Press a Key
Whenever you press a key, the firmware of your keyboard can register this event.
It can register when the key is pressed, held and released.
This usually happens with a [periodic scan of key presses with a frequency around 100 hz](https://github.com/benblazak/ergodox-firmware/blob/master/references.md#typical-keyboard-information).
This speed often is limited by the mechanical key response time, the protocol
to transfer those key presses (here USB HID), and by the software it is used in.
## 2. What the Firmware Sends
The [HID specification](http://www.usb.org/developers/hidpage/Hut1_12v2.pdf)
tells what a keyboard can actually send through USB to have a chance to be
properly recognised. This includes a pre-defined list of keycodes which are
simple numbers from `0x00` to `0xE7`. The firmware assigns a keycode to each
key of the keyboard.
The firmware does not send actually letters or characters, but only keycodes.
Thus, by modifying the firmware, you only can modify what keycode is sent over
USB for a given key.
## 3. What the Operating System Does
Once the keycode reaches the operating system, a piece of software has to have
it match an actual character thanks to a keyboard layout. For example, if your
layout is set to QWERTY, a sample of the matching table is as follow:
``` text
| keycode | character |
|---------+-----------|
| 0x04 | a/A |
| 0x05 | b/B |
| 0x06 | c/C |
| ... | ... |
| 0x1C | y/Y |
| 0x1D | z/Z |
| ... | ... |
|---------+-----------|
```
## Back to the firmware
As the layout is generally fixed (unless you create your own), the firmware can
actually call a keycode by its layout name directly to ease things for you.
This is exactly what is done here with `KC_A` actually representing `0x04` in
QWERTY. The full list can be found in `keycode.txt`.
## List of Characters You Can Send
Putting aside shortcuts, having a limited set of keycodes mapped to a limited
layout means that **the list of characters you can assign to a given key only
is the ones present in the layout**.
For example, this means that if you have a QWERTY US layout, and you want to
assign 1 key to produce `€` (euro currency symbol), you are unable to do so,
because the QWERTY US layout does not have such mapping. You could fix that by
using a QWERTY UK layout, or a QWERTY US International.
You may wonder why a keyboard layout containing all of Unicode is not devised
then? The limited number of keycode available through USB simply disallow such
a thing.
## How to (Maybe) Enter Unicode Characters
You can have the firmware send *sequences of keys* to use the [software Unicode
Input
Method](https://en.wikipedia.org/wiki/Unicode_input#Hexadecimal_code_input) of
the target operating system, thus effectively entering characters independently
of the layout defined in the OS.
Yet, it does come with multiple disadvantages:
- Tied to a specific OS a a time (need recompilation when changing OS);
- Within a given OS, does not work in all software;
## This guide may be out-dated - use doc/BUILD_GUIDE.md instead
Download and Install
--------------------
### 1. Install Tools
1.**Toolchain** On Windows install [MHV AVR Tools][mhv] for AVR GCC compiler and [Cygwin][cygwin](or [MinGW][mingw]) for shell terminal. On Mac you can use [CrossPack][crosspack]. On Linux you can install AVR GCC (and avr-libc) with your favorite package manager or run the avr_setup.sh script in the root of this repository.
2.**Programmer** On Windows install [Atmel FLIP][flip]. On Mac and Linux install [dfu-programmer][dfu-prog].
3.**Driver** On Windows you start DFU bootloader on the chip first time you will see 'Found New Hardware Wizard' to install driver. If you install device driver properly you can find chip name like 'ATmega32U4' under 'LibUSB-Win32 Devices' tree on 'Device Manager'. If not you shall need to update its driver on 'Device Manager'. You will find the driver in `FLIP` install directory like: C:\Program Files (x86)\Atmel\Flip 3.4.5\usb\. In case of `dfu-programmer` use its driver.
If you use PJRC Teensy you don't need step 2 and 3 above, just get [Teensy loader][teensy-loader].
### 2. Download source
You can find firmware source at github:
-<https://github.com/tmk/tmk_keyboard>
If you are familiar with `Git` tools you are recommended to use it but you can also download zip archive from:
Open terminal window to get access to commands. Use Cygwin(or MingGW) `shell terminal` in Windows or `Terminal.app` on Mac OSX. In Windows press `Windows` key and `R` then enter `cmd` in 'Run command' dialog showing up.
### 2. Change directory
Move to project directory in the firmware source.
cd tmk_keyboard/{'keyboard' or 'converter'}/<project>
### 3. Make
Build firmware using GNU `make` command. You'll see `<project>_<variant>.hex` file in that directory unless something unexpected occurs in build process.
make -f Makefile.<variant> clean
make -f Makefile.<variant>
Program Controller
------------------
Now you have **hex** file to program on current directory. This **hex** is only needed to program your controller, other files are used for development and you may leave and forget them.
### 1. Start bootloader
How to program controller depends on controller chip and its board design. To program AVR USB chips you'll need to start it up in bootloader mode. Most of boards with the chip have a push button to let bootloader come up. Consult with your controller board manual.
### 2. Program with DFU bootloader
Stock AVR USB chip including ATmega32U4 has DFU bootloader by factory default. `FLIP` is a DFU programmer on Windows offered by Atmel. Open source command line tool `dfu-programmer` also supports AVR chips, it runs on Linux, Mac OSX and even Windows.
To program AVR chip with DFU bootloader use `FLIP` or `dfu-programmer`.
If you have a proper program command in `Makefile` just type this.
`FLIP` has two version of tool, GUI app and command line program. If you want GUI see tutorial below.
To use command line tool run this command. Note that you need to set PATH variable properly.
$ make -f Makefile.<variant> flip
Or to program with `dfu-programmer` run:
$ make -f Makefile.<variant> dfu
#### FLIP GUI tutorial
1. On menu bar click Device -> Select, then. `ATmega32u4`.
2. On menu bar click Settings -> Communication -> USB, then click 'Open' button on 'USB Port Connection' dialog.
At this point you'll see grey-outed widgets on the app get colored and ready.
3. On menu bar click File -> Load HEX File, then select your firmware hex file on File Selector dialog.
4. On 'Operations Flow' panel click 'Run' button to load the firmware binary to the chip. Note that you should keep 'Erase', 'Blank Check', 'Program' and 'Verify' check boxes selected.
5. Re-plug USB cord or click 'Start Application' button to restart your controller.
If you have PJRC Teensy see instruction of `Teensy Loader`.
-<http://www.pjrc.com/teensy/loader.html>
Or use this command if you have command line version of Teensy Loader installed.
$ make -f Makefile.<variant> teensy
### 4. Program with Other programmer
You may want to use other programmer like `avrdude` with AVRISPmkII, Arduino or USBasp. In that case you can still use make target `program` for build with configuring `PROGRAM_CMD` in Makefile.
Optional. Set proper command for your controller, bootloader and programmer. This command can be used with `make program`. Not needed if you use `FLIP`, `dfu-programmer` or `Teensy Loader`.
***NOTE: This is not final version, may be inconsistent with source code and changed occasionally for a while.***
## 0. Keymap and layers
**Keymap** is comprised of multiple layers of key layout, you can define **32 layers** at most.
**Layer** is an array of **keycodes** to define **actions** for each physical keys.
respective layers can be validated simultaneously. Layers are indexed with 0 to 31 and higher layer has precedence.
Keymap: 32 Layers Layer: Keycode matrix
----------------- ---------------------
stack of layers array_of_keycode[row][column]
____________ precedence _______________________
/ / | high / ESC / F1 / F2 / F3 ....
31 /___________// | /-----/-----/-----/-----
30 /___________// | / TAB / Q / W / E ....
29 /___________/ | /-----/-----/-----/-----
: _:_:_:_:_:__ | : /LCtrl/ A / S / D ....
: / : : : : : / | : / : : : :
2 /___________// | 2 `--------------------------
1 /___________// | 1 `--------------------------
0 /___________/ V low 0 `--------------------------
### 0.1 Keymap status
Keymap has its state in two parameters:
**`default_layer`** indicates a base keymap layer(0-31) which is always valid and to be referred, **`keymap_stat`** is 16bit variable which has current on/off status of layers on its each bit.
Keymap layer '0' is usually `default_layer` and which is the only valid layer and other layers is initially off after boot up firmware, though, you can configured them in `config.h`.
To change `default_layer` will be useful when you switch key layout completely, say you want Colmak instead of Qwerty.
Initial state of Keymap Change base layout
----------------------- ------------------
31 31
30 30
29 29
: :
: : ____________
2 ____________ 2 / /
1 / / ,->1 /___________/
,->0 /___________/ | 0
| |
`--- default_layer = 0 `--- default_layer = 1
layer_state = 0x00000001 layer_state = 0x00000002
On the other hand, you shall change `layer_state` to overlay base layer with some layers for feature such as navigation keys, function key(F1-F12), media keys or special actions.
See [`common/keycode.h`](../common/keycode.h) orkeycodetablebelowforthedetail.Keycodeisinternal**8bit code**toindicateactionperformedonkeyinkeymap.Keycodehas`KC_`prefixedsymbolrespectively.Mostofkeycodeslike`KC_A`havesimpleactionregisterskeytohostonpressandunregisteronrelease,whilesomeofotherkeycodeshassomespecialactionslike`Fn`keys,Mediacontrolkeys,SystemcontrolkeysandMousekeys.
See [`common/action_code.h`](../common/action_code.h).Actionisa**16bit code**anddefinesfunctiontoperformoneventsofakeylikepress,release,holdingandtapping.
***Youcanjustusekeycodesof`Normal key`,`Modifier`,`Mousekey`and`System & Media key`inkeymap***toindicatecorrespondingactionsinsteadofusingactioncodes.While***touseotherspecialactionsyoushouldusekeycodeof`Fn`keydefinedin`fn_actions[]`.***
***Thusyoushallneedtoplaceanactiontogobackondestinationlayer***,oryouwillbestuckindestinationlayerwithoutwaytogetback.Usuallyyouneedtoplacesameactionor'KC_TRNS` on destination layer to get back.
### 3.2 Toggle switching
Toggle switching performed after releasing a key. With this action you can keep staying on the destination layer until you type the key again to return.
This performs toggle switching action of 'Layer 2'.
ACTION_LAYER_TOGGLE(2)
### 3.3 Momentary switching with Tap key
These actions switch a layer only while holding a key but register the key on tap. **Tap** means to press and release a key quickly.
ACTION_LAYER_TAP_KEY(2, KC_SCLN)
With this you can place a layer switching action on normal key like ';' without losing its original key register function. This action allows you to have layer switching action without necessity of a dedicated key. It means you can have it even on home row of keyboard.
### 3.4 Momentary switching with Tap Toggle
This switches layer only while holding a key but toggle layer with several taps. **Tap** means to press and release key quickly.
ACTION_LAYER_TAP_TOGGLE(1)
Number of taps can be configured with `TAPPING_TOGGLE` in `config.h`, `5` by default.
### 3.5 Momentary switching with Modifiers
This registers modifier key(s) simultaneously with layer switching.
ACTION_LAYER_MODS(2, MOD_LSFT | MOD_LALT)
## 4. Tapping
Tapping is to press and release a key quickly. Tapping speed is determined with setting of `TAPPING_TERM`, which can be defined in `config.h`, 200ms by default.
### 4.1 Tap Key
This is a feature to assign normal key action and modifier including layer switching to just same one physical key. This is a kind of [Dual role key][dual_role]. It works as modifier when holding the key but registers normal key when tapping.
This is a feature to assign both toggle layer and momentary switch layer action to just same one physical key. It works as momentary layer switch when holding a key but toggle switch with several taps.
ACTION_LAYER_TAP_TOGGLE(1)
### 4.3 Oneshot Modifier
This runs onetime effects which modify only on just one following key. It works as normal modifier key when holding down while oneshot modifier when tapping. The behavior of oneshot modifiers is similar to the [sticky keys](https://en.wikipedia.org/wiki/StickyKeys) functionality found in most operating systems.
ACTION_MODS_ONESHOT(MOD_LSFT)
Oneshot layer key:
ACTION_LAYER_ONESHOT(MY_LAYER)
Say you want to type 'The', you have to push and hold Shift key before type 't' then release it before type 'h' and 'e', otherwise you'll get 'THe' or 'the' unintentionally. With Oneshot Modifier you can tap Shift then type 't', 'h' and 'e' normally, you don't need to holding Shift key properly here. This mean you can release Shift before 't' is pressed down.
Oneshot effect is cancel unless following key is pressed down within `ONESHOT_TIMEOUT` of `config.h`. No timeout when it is `0` or not defined.
Most implementations of sticky keys allow you to lock a modifier by double tapping the modifier. The layer then remains locked untill the modifier is tapped again. To enable this behaviour for oneshot modifiers set `ONESHOT_TAP_TOGGLE` to the number taps required. The feature is disabled if `ONESHOT_TAP_TOGGLE<2` or not defined.
### 4.4 Tap Toggle Mods
Similar to layer tap toggle, this works as a momentary modifier when holding, but toggles on with several taps. A single tap will 'unstick' the modifier again.
ACTION_MODS_TAP_TOGGLE(MOD_LSFT)
## 5. Legacy Keymap
This was used in prior version and still works due to legacy support code in `common/keymap.c`. Legacy keymap doesn't support many of features that new keymap offers. ***It is not recommended to use Legacy Keymap for new project.***
To enable Legacy Keymap support define this macro in `config.h`.
#define USE_LEGACY_KEYMAP
Legacy Keymap uses two arrays `fn_layer[]` and `fn_keycode[]` to define Fn key. The index of arrays corresponds with postfix number of `Fn` key. Array `fn_layer[]` indicates destination layer to switch and `fn_keycode[]` has keycodes to send when tapping `Fn` key.
In following setting example, `Fn0`, `Fn1` and `Fn2` switch layer to 1, 2 and 2 respectively. `Fn2` registers `Space` key when tapping while `Fn0` and `Fn1`doesn'tsendanykey.
QMK (*Quantum Mechanical Keyboard*) is an open source community that maintains QMK Firmware, QMK Flasher, qmk.fm, and these docs. QMK Firmware is a keyboard firmware based on the [tmk\_keyboard](http://github.com/tmk/tmk_keyboard) with some useful features for Atmel AVR controllers, and more specifically, the [OLKB product line](http://olkb.com), the [ErgoDox EZ](http://www.ergodox-ez.com) keyboard, and the [Clueboard product line](http://clueboard.co/). It has also been ported to ARM chips using ChibiOS. You can use it to power your own hand-wired or custom keyboard PCB.
## How to Get It {#how-to-get-it}
If you plan on contributing a keymap, keyboard, or features to QMK, the easiest thing to do is [fork the repo through Github](https://github.com/qmk/qmk_firmware#fork-destination-box), and clone your repo locally to make your changes, push them, then open a [Pull Request](https://github.com/qmk/qmk_firmware/pulls) from your fork.
Otherwise, you can either download it directly ([zip](https://github.com/qmk/qmk_firmware/zipball/master), [tar](https://github.com/qmk/qmk_firmware/tarball/master)), or clone it via git (`git@github.com:qmk/qmk_firmware.git`), or https (`https://github.com/qmk/qmk_firmware.git`).
## How to Compile {#how-to-compile}
Before you are able to compile, you'll need to [install an environment](getting_started_build_tools.md) for AVR or/and ARM development. Once that is complete, you'll use the `make` command to build a keyboard and keymap with the following notation:
make planck/rev4:default
This would build the `rev4` revision of the `planck` with the `default` keymap. Not all keyboards have revisions (also called subprojects or folders), in which case, it can be omitted:
make preonic:default
## How to Customize {#how-to-customize}
QMK has lots of [features](features.md) to explore, and a good deal of [reference documentation](http://docs.qmk.fm) to dig through. Most features are taken advantage of by modifying your [keymap](keymap.md), and changing the [keycodes](keycodes.md).
A QMK collaborator is a keyboard maker/designer that is interested in helping QMK grow and fully support their keyboard(s), and encouraging their users/customers to submit features, ideas, and keymaps. We're always looking to add more keyboards and collaborators, but we ask that they fulfill these requirements:
* **Have a PCB available for sale** - unfortunately there's just too much variation and complications with handwired keyboards.
* **Maintain the your keyboard's directory** - this may just require an initial setup to get your keyboard working, but it could also include accommodating changes made to QMK's core.
* **Approve and merge your keyboard's keymap pull requests** - we like to encourage users to contribute their keymaps for others to see and work from when creating their own.
If you feel you meet these requirements, shoot us an email at hello@qmk.fm with an introduction and some links to your keyboard!
QMK is nearly infinitely configurable. Wherever possible we err on the side of allowing users to customize their keyboard, even at the expense of code size. That level of flexibility makes for a daunting configuration experience, however.
There are two main types of configuration files in QMK- `config.h` and `rules.mk`. These files exist at various levels in QMK and all files of the same type are combined to build the final configuration. The levels, from lowest priority to highest priority, are:
* QMK Default
* Keyboard
* Folders (Up to 5 levels deep)
* Keymap
## QMK Default
Every available setting in QMK has a default. If that setting is not set at the Keyboard, Folder, or Keymap level this is the setting that will be used.
## Keyboard
This level contains config options that should apply to the whole keyboard. Some settings won't change in revisions, or most keymaps. Other settings are merely defaults for this keyboard and can be overridden by folders and/or keymaps.
## Folders
Some keyboards have folders and sub-folders to allow for different hardware configurations. Most keyboards only go 1 folder deep, but QMK supports structures up to 5 folders deep. Each folder can have its own `config.h` and `rules.mk` files that are incorporated into the final configuration.
## Keymap
This level contains all of the options for that particular keymap. If you wish to override a previous declaration, you can use `#undef <variable>` to undefine it, where you can then redefine it without an error.
# The `config.h` File
This is a C header file that is one of the first things included, and will persist over the whole project (if included). Lots of variables can be set here and accessed elsewhere. The `config.h` file shouldn't be including other `config.h` files, or anything besides this:
#include "config_common.h"
## `config.h` Options
### Hardware Options
*`#define VENDOR_ID 0x1234`
* defines your VID, and for most DIY projects, can be whatever you want
*`#define PRODUCT_ID 0x5678`
* defines your PID, and for most DIY projects, can be whatever you want
*`#define DEVICE_VER 0`
* defines the device version (often used for revisions)
* COL2ROW or ROW2COL - how your matrix is configured. COL2ROW means the black mark on your diode is facing to the rows, and between the switch and the rows.
*`#define AUDIO_VOICES`
* turns on the alternate audio voices (to cycle through)
*`#define C6_AUDIO`
* enables audio on pin C6
*`#define B5_AUDIO`
* enables audio on pin B5 (duophony is enable if both are enabled)
*`#define BACKLIGHT_PIN B7`
* pin of the backlight - B5, B6, B7 use PWM, others use softPWM
*`#define BACKLIGHT_LEVELS 3`
* number of levels your backlight will have (maximum 15 excluding off)
*`#define BACKLIGHT_BREATHING`
* enables backlight breathing (only works with backlight pins B5, B6 and B7)
*`#define BREATHING_PERIOD 6`
* the length of one backlight "breath" in seconds
*`#define DEBOUNCING_DELAY 5`
* the delay when reading the value of the pin (5 is default)
*`#define LOCKING_SUPPORT_ENABLE`
* mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap
*`#define LOCKING_RESYNC_ENABLE`
* tries to keep switch state consistent with keyboard LED state
* key combination that allows the use of magic commands (useful for debugging)
### Features That Can Be Disabled
If you define these options you will disable the associated feature, which can save on code size.
*`#define NO_DEBUG`
* disable debugging
*`#define NO_PRINT`
* disable printing/debugging using hid_listen
*`#define NO_ACTION_LAYER`
* disable layers
*`#define NO_ACTION_TAPPING`
* disable tap dance and other tapping features
*`#define NO_ACTION_ONESHOT`
* disable one-shot modifiers
*`#define NO_ACTION_MACRO`
* disable all macro handling
*`#define NO_ACTION_FUNCTION`
* disable the action function (deprecated)
### Features That Can Be Enabled
If you define these options you will enable the associated feature, which may increase your code size.
*`#define FORCE_NKRO`
* NKRO by default requires to be turned on, this forces it on during keyboard startup regardless of EEPROM setting. NKRO can still be turned off but will be turned on again if the keyboard reboots.
*`#define PREVENT_STUCK_MODIFIERS`
* when switching layers, this will release all mods
### Behaviors That Can Be Configured
*`#define TAPPING_TERM 200`
* how long before a tap becomes a hold
*`#define RETRO_TAPPING`
* tap anyway, even after TAPPING_TERM, if there was no other key interruption between press and release
*`#define TAPPING_TOGGLE 2`
* how many taps before triggering the toggle
*`#define PERMISSIVE_HOLD`
* makes tap and hold keys work better for fast typers who don't want tapping term set above 500
*`#define LEADER_TIMEOUT 300`
* how long before the leader key times out
*`#define ONESHOT_TIMEOUT 300`
* how long before oneshot times out
*`#define ONESHOT_TAP_TOGGLE 2`
* how many taps before oneshot toggle is triggered
*`#define IGNORE_MOD_TAP_INTERRUPT`
* makes it possible to do rolling combos (zx) with keys that convert to other keys on hold
*`#define QMK_KEYS_PER_SCAN 4`
* Allows sending more than one key per scan. By default, only one key event gets
sent via `process_record()` per scan. This has little impact on most typing, but
if you're doing a lot of chords, or your scan rate is slow to begin with, you can
have some delay in processing key events. Each press and release is a separate
event. For a keyboard with 1ms or so scan times, even a very fast typist isn't
going to produce the 500 keystrokes a second needed to actually get more than a
few ms of delay from this. But if you're doing chording on something with 3-4ms
scan times? You probably want this.
### RGB Light Configuration
*`#define RGB_DI_PIN D7`
* pin the DI on the ws2812 is hooked-up to
*`#define RGBLIGHT_ANIMATIONS`
* run RGB animations
*`#define RGBLED_NUM 15`
* number of LEDs
*`#define RGBLIGHT_HUE_STEP 12`
* units to step when in/decreasing hue
*`#define RGBLIGHT_SAT_STEP 25`
* units to step when in/decreasing saturation
*`#define RGBLIGHT_VAL_STEP 12`
* units to step when in/decreasing value (brightness)
*`#define RGBW_BB_TWI`
* bit-bangs TWI to EZ RGBW LEDs (only required for Ergodox EZ)
### Mouse Key Options
*`#define MOUSEKEY_INTERVAL 20`
*`#define MOUSEKEY_DELAY 0`
*`#define MOUSEKEY_TIME_TO_MAX 60`
*`#define MOUSEKEY_MAX_SPEED 7`
*`#define MOUSEKEY_WHEEL_DELAY 0`
# The `rules.mk` File
This is a [make](https://www.gnu.org/software/make/manual/make.html) file that is included by the top-level `Makefile`. It is used to set some information about the MCU that we will be compiling for as well as enabling and disabling certain features.
## `rules.mk` Options
### Build Options
*`DEFAULT_FOLDER`
* Used to specify a default folder when a keyboard has more than one sub-folder.
*`SRC`
* Used to add files to the compilation/linking list.
*`LAYOUTS`
* A list of [layouts](feature_layouts.md) this keyboard supports.
### AVR MCU Options
*`MCU = atmega32u4`
*`F_CPU = 16000000`
*`ARCH = AVR8`
*`F_USB = $(F_CPU)`
*`OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT`
*`BOOTLOADER = atmel-dfu` with the following options:
*`atmel-dfu`
*`lufa-dfu`
*`qmk-dfu`
*`halfkay`
*`caterina`
*`bootloadHID`
### Feature Options
Use these to enable or disable building certain features. The more you have enabled the bigger your firmware will be, and you run the risk of building a firmware too large for your MCU.
*`BOOTMAGIC_ENABLE`
* Virtual DIP switch configuration(+1000)
*`MOUSEKEY_ENABLE`
* Mouse keys(+4700)
*`EXTRAKEY_ENABLE`
* Audio control and System control(+450)
*`CONSOLE_ENABLE`
* Console for debug(+400)
*`COMMAND_ENABLE`
* Commands for debug and configuration
*`NKRO_ENABLE`
* USB N-Key Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
👍🎉 First off, thanks for taking the time to read this and contribute! 🎉👍
Third-party contributions help us grow and improve QMK. We want to make the pull request and contribution process useful and easy for both contributors and maintainers. To this end we've put together some guidelines for contributors to help your pull request be accepted without major changes.
* [Project Overview](#project-overview)
* [Coding Conventions](#coding-conventions)
* [General Guidelines](#general-guidelines)
* [What does the Code of Conduct mean for me?](#what-does-the-code-of-conduct-mean-for-me)
## I Don't Want to Read This Whole Thing! I Just Have a Question!
If you'd like to ask questions about QMK you can do so on the [OLKB Subreddit](https://reddit.com/r/olkb) or on [Gitter](https://gitter.im/qmk/qmk_firmware).
Please keep these things in mind:
* It may take several hours for someone to respond to your question. Please be patient!
* Everyone involved with QMK is donating their time and energy. We don't get paid to work on or answer questions about QMK.
* Try to ask your question so it's as easy to answer as possible. If you're not sure how to do that these are some good guides:
QMK is largely written in C, with specific features and parts written in C++. It targets embedded processors found in keyboards, particularly AVR ([LUFA](http://www.fourwalledcubicle.com/LUFA.php)) and ARM ([ChibiOS](http://www.chibios.com)). If you are already well versed in Arduino programming you'll find a lot of the concepts and limitations familiar. Prior experience with Arduino is not required to successfully contribute to QMK.
<!-- FIXME: We should include a list of resources for learning C here. -->
# Where Can I Go for Help?
If you need help you can [open an issue](https://github.com/qmk/qmk_firmware/issues) or [chat on gitter](http://gitter.im/QMK/qmk_firmware).
# How Do I Make a Contribution?
Never made an open source contribution before? Wondering how contributions work in QMK? Here's a quick rundown!
0. Sign up for a [GitHub](https://github.com) account.
1. Put together a keymap to contribute, [find an issue](https://github.com/qmk/qmk_firmware/issues) you are interested in addressing, or [a feature](https://github.com/qmk/qmk_firmware/issues?q=is%3Aopen+is%3Aissue+label%3Afeature) you would like to add.
2. Fork the repository associated with the issue to your GitHub account. This means that you will have a copy of the repository under `your-GitHub-username/qmk_firmware`.
3. Clone the repository to your local machine using `git clone https://github.com/github-username/repository-name.git`.
4. If you're working on a new feature consider opening an issue to talk with us about the work you're about to undertake.
5. Create a new branch for your fix using `git checkout -b branch-name-here`.
6. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
7. Use `git add insert-paths-of-changed-files-here` to add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index.
8. Use `git commit -m "Insert a short message of the changes made here"` to store the contents of the index with a descriptive message.
9. Push the changes to your repository on GitHub using `git push origin branch-name-here`.
10. Submit a pull request to [QMK Firmware](https://github.com/qmk/qmk_firmware/pull/new/master).
11. Title the pull request with a short description of the changes made and the issue or bug number associated with your change. For example, you can title an issue like so "Added more log outputting to resolve #4352".
12. In the description of the pull request explain the changes that you made, any issues you think exist with the pull request you made, and any questions you have for the maintainer. It's OK if your pull request is not perfect (no pull request is), the reviewer will be able to help you fix any problems and improve it!
13. Wait for the pull request to be reviewed by a maintainer.
14. Make changes to the pull request if the reviewing maintainer recommends them.
15. Celebrate your success after your pull request is merged!
# Coding Conventions
Most of our style is pretty easy to pick up on, but right now it's not entirely consistent. You should match the style of the code surrounding your change, but if that code is inconsistent or unclear use the following guidelines:
* We indent using two spaces (soft tabs)
* We use One True Brace Style
* Opening Brace: At the end of the same line as the statement that opens the block
* Closing Brace: Lined up with the first character of the statement that opens the block
* Else If: Place the closing brace at the beginning of the line and the next opening brace at the end of the same line.
* Optional Braces: Always include optional braces.
* Good: if (condition) { return false; }
* Bad: if (condition) return false;
* We use C style comments: `/* */`
* Think of them as a story describing the feature
* Use them liberally to explain why particular decisions were made.
* Do not write obvious comments
* If you not sure if a comment is obvious, go ahead and include it.
* In general we don't wrap lines, they can be as long as needed. If you do choose to wrap lines please do not wrap any wider than 76 columns.
# General Guidelines
We have a few different types of changes in QMK, each requiring a different level of rigor. We'd like you to keep the following guidelines in mind no matter what type of change you're making.
* Separate PR's into logical units. For example, do not submit one PR covering two separate features, instead submit a separate PR for each feature.
* Check for unnecessary whitespace with `git diff --check` before committing.
* Make sure your code change actually compiles.
* Keymaps: Make sure that `make keyboard:your_new_keymap` does not return an error
* Keyboards: Make sure that `make keyboard:all` does not return any errors
* Core: Make sure that `make all` does not return any errors.
* Make sure commit messages are understandable on their own. You should put a short description (no more than 70 characters) on the first line, the second line should be empty, and on the 3rd and later lines you should describe your commit in detail, if required. Example:
```
Adjust the fronzlebop for the kerpleplork
The kerpleplork was intermittently failing with error code 23. The root cause was the fronzlebop setting, which causes the kerpleplork to activate every N iterations.
Limited experimentation on the devices I have available shows that 7 is high enough to avoid confusing the kerpleplork, but I'd like to get some feedback from people with ARM devices to be sure.
```
## Documentation
Documentation is one of the easiest ways to get started contributing to QMK. Finding places where the documentation is wrong or incomplete and fixing those is easy! We also very badly need someone to edit our documentation, so if you have editing skills but aren't sure where or how to jump in please [reach out for help](#where-can-i-go-for-help)!
You'll find all our documentation in the `qmk_firmware/docs` directory, or if you'd rather use a web based workflow you can click "Suggest An Edit" at the top of each page on http://docs.qmk.fm/.
## Keymaps
Most first-time QMK contributors start with their personal keymaps. We try to keep keymap standards pretty casual (keymaps, after all, reflect the personality of their creators) but we do ask that you follow these guidelines to make it easier for others to discover and learn from your keymap.
* Write a `readme.md` using [the template](https://docs.qmk.fm/documentation_templates.html#).
* All Keymap PR's are squashed, so if you care about how your commits are squashed you should do it yourself
* Do not lump features in with keymap PR's. Submit the feature first and then a second PR for the keymap.
* Do not include `Makefile`s in your keymap folder (they're no longer used)
* Update copyrights in file headers (look for `REPLACE_WITH_YOUR_NAME `)
## Keyboards
Keyboards are the raison d'être for QMK. Some keyboards are community maintained, while others are maintained by the people responsible for making a particular keyboard. The `readme.md` should tell you who maintains a particular keyboard. If you have questions relating to a particular keyboard you can [Open An Issue](https://github.com/qmk/qmk_firmware/issues) and tag the maintainer in your question.
We also ask that you follow these guidelines:
* Write a `readme.md` using [the template](https://docs.qmk.fm/documentation_templates.html#).
* Keep the number of commits reasonable or we will squash your PR
* Do not lump core features in with new keyboards. Submit the feature first and then submit a separate PR for the keyboard.
* Name `.c`/`.h` file after the immediate parent folder, eg `/keyboards/<kb1>/<kb2>/<kb2>.[ch]`
* Do not include `Makefile`s in your keyboard folder (they're no longer used)
* Update copyrights in file headers (look for `REPLACE_WITH_YOUR_NAME `)
## Quantum/TMK Core
Before you put a lot of work into building your new feature you should make sure you are implementing it in the best way. You can get a basic understanding of QMK by reading [Understanding QMK](understanding_qmk.md), which will take you on a tour of the QMK program flow. From here you should talk to us to get a sense of the best way to implement your idea. There are two main ways to do this:
* [Chat on Gitter](https://gitter.im/qmk/qmk_firmware)
* [Open an Issue](https://github.com/qmk/qmk_firmware/issues/new)
Feature and Bug Fix PR's affect all keyboards. We are also in the process of restructuring QMK. For this reason it is especially important for significant changes to be discussed before implementation has happened. If you open a PR without talking to us first please be prepared to do some significant rework if your choices do not mesh well with our planned direction.
Here are some things to keep in mind when working on your feature or bug fix.
* **Disabled by default** - memory is a pretty limited on most chips QMK supports, and it's important that current keymaps aren't broken, so please allow your feature to be turned **on**, rather than being turned off. If you think it should be on by default, or reduces the size of the code, please talk with us about it.
* **Compile locally before submitting** - hopefully this one is obvious, but things need to compile! Our Travis system will catch any issues, but it's generally faster for you to compile a few keyboards locally instead of waiting for the results to come back.
* **Consider revisions and different chip-bases** - there are several keyboards that have revisions that allow for slightly different configurations, and even different chip-bases. Try to make a feature supported in ARM and AVR, or automatically disabled on platforms it doesn't work on.
* **Explain your feature** - Document it in `docs/`, either as a new file or as part of an existing file. If you don't document it other people won't be able to benefit from your hard work.
We also ask that you follow these guidelines:
* Keep the number of commits reasonable or we will squash your PR
* Do not lump keyboards or keymaps in with core changes. Submit your core changes first.
* Write [Unit Tests](http://docs.qmk.fm/unit_testing.html) for your feature
* Follow the style of the file you are editing. If the style is unclear or there are mixed styles you should conform to the [coding conventions](#coding-conventions) above.
## Refactoring
To maintain a clear vision of how things are laid out in QMK we try to plan out refactors in-depth and have a collaborator make the changes. If you have an idea for refactoring, or suggestions, [open an issue](https://github.com/qmk/qmk_firmware/issues), we'd love to talk about how QMK can be improved.
# What Does the Code of Conduct Mean for Me?
Our [Code of Conduct](https://github.com/qmk/qmk_firmware/blob/master/CODE_OF_CONDUCT.md) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code.
For a lot of people a custom keyboard is about more than sending button presses to your computer. You want to be able to do things that are more complex than simple button presses and macros. QMK has hooks that allow you to inject code, override functionality, and otherwise customize how your keyboard behaves in different situations.
This page does not assume any special knowledge about QMK, but reading [Understanding QMK](understanding_qmk.md) will help you understand what is going on at a more fundamental level.
## A Word on Core vs Keyboards vs Keymap
We have structured QMK as a hierarchy:
* Core (`_quantum`)
* Keyboard/Revision (`_kb`)
* Keymap (`_user`)
Each of the functions described below can be defined with a `_kb()` suffix or a `_user()` suffix. We intend for you to use the `_kb()` suffix at the Keyboard/Revision level, while the `_user()` suffix should be used at the Keymap level.
When defining functions at the Keyboard/Revision level it is important that your `_kb()` implementation call `_user()` before executing anything else- otherwise the keymap level function will never be called.
# Custom Keycodes
By far the most common task is to change the behavior of an existing keycode or to create a new keycode. From a code standpoint the mechanism for each is very similar.
## Defining a New Keycode
The first step to creating your own custom keycode(s) is to enumerate them. This means both naming them and assigning a unique number to that keycode. Rather than limit custom keycodes to a fixed range of numbers QMK provides the `SAFE_RANGE` macro. You can use `SAFE_RANGE` when enumerating your custom keycodes to guarantee that you get a unique number.
Here is an example of enumerating 2 keycodes. After adding this block to your `keymap.c` you will be able to use `FOO` and `BAR` inside your keymap.
```
enum my_keycodes {
FOO = SAFE_RANGE,
BAR
};
```
## Programming the Behavior of Any Keycode
When you want to override the behavior of an existing key, or define the behavior for a new key, you should use the `process_record_kb()` and `process_record_user()` functions. These are called by QMK during key processing before the actual key event is handled. If these functions return `true` QMK will process the keycodes as usual. That can be handy for extending the functionality of a key rather than replacing it. If these functions return `false` QMK will skip the normal key handling, and it will be up to you to send any key up or down events that are required.
These function are called every time a key is pressed or released.
### Example `process_record_user()` Implementation
This example does two things. It defines the behavior for a custom keycode called `FOO`, and it supplements our Enter key by playing a tone whenever it is pressed.
Before a keyboard can be used the hardware must be initialized. QMK handles initialization of the keyboard matrix itself, but if you have other hardware like LED's or i²c controllers you will need to set up that hardware before it can be used.
### Example `matrix_init_kb()` Implementation
This example, at the keyboard level, sets up B1, B2, and B3 as LED pins.
```
void matrix_init_kb(void) {
// Call the keymap level matrix init.
matrix_init_user();
// Set our LED pins as output
DDRB |= (1<<1);
DDRB |= (1<<2);
DDRB |= (1<<3);
}
```
### `matrix_init_*` Function Documentation
* Keyboard/Revision: `void matrix_init_kb(void)`
* Keymap: `void matrix_init_user(void)`
# Matrix Scanning Code
Whenever possible you should customize your keyboard by using `process_record_*()` and hooking into events that way, to ensure that your code does not have a negative performance impact on your keyboard. However, in rare cases it is necessary to hook into the matrix scanning. Be extremely careful with the performance of code in these functions, as it will be called at least 10 times per second.
### Example `matrix_scan_*` Implementation
This example has been deliberately omitted. You should understand enough about QMK internals to write this without an example before hooking into such a performance sensitive area. If you need help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) or [chat with us on gitter](https://gitter.im/qmk/qmk_firmware).
### `matrix_scan_*` Function Documentation
* Keyboard/Revision: `void matrix_scan_kb(void)`
* Keymap: `void matrix_scan_user(void)`
This function gets called at every matrix scan, which is basically as often as the MCU can handle. Be careful what you put here, as it will get run a lot.
You should use this function if you need custom matrix scanning code. It can also be used for custom status output (such as LED's or a display) or other functionality that you want to trigger regularly even when the user isn't typing.
This page exists to document best practices when writing documentation for QMK. Following these guidelines will help to keep a consistent tone and style, which will in turn help other people more easily understand QMK.
# Page Opening
Your documentation page should generally start with an H1 heading, followed by a 1 paragraph description of what the user will find on this page. Keep in mind that this heading and paragraph will sit next to the Table of Contents, so keep the heading short and avoid long strings with no whitespace.
Example:
```
# My Page Title
This page covers my super cool feature. You can use this feature to make coffee, squeeze fresh oj, and have an egg mcmuffin and hashbrowns delivered from your local macca's by drone.
```
# Headings
Your page should generally have multiple "H1" headings. Only H1 and H2 headings will included in the Table of Contents, so plan them out appropriately. Excess width should be avoided in H1 and H2 headings to prevent the Table of Contents from getting too wide.
# Styled Hint Blocks
You can have styled hint blocks drawn around text to draw attention to it.
```
{% hint style='info' %}
This uses `hint style='info'`
{% endhint %}
```
### Examples:
{% hint style='info' %}
This uses `hint style='info'`
{% endhint %}
{% hint style='tip' %}
This uses `hint style='tip'`
{% endhint %}
{% hint style='danger' %}
This uses `hint style='danger'`
{% endhint %}
{% hint style='working' %}
This uses `hint style='working'`
{% endhint %}
# Styled Terminal Blocks
You can present styled terminal blocks by including special tokens inside your text block.
You can add some colors. What about a warning message?
**[warning [WARNING] The color depends on the theme. Could look normal too]
What about an error message?
**[error [ERROR] This is not the error you are looking for]
```
# Documenting Features
If you create a new feature for QMK, create a documentation page for it. It doesn't have to be very long, a few sentences describing your feature and a table listing any relevant keycodes is enough. Here is a basic template:
```markdown
# My Cool Feature
This page describes my cool feature. You can use my cool feature to make coffee and order cream and sugar to be delivered via drone.
## My Cool Feature Keycodes
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_COFFEE||Make Coffee|
|KC_CREAM||Order Cream|
|KC_SUGAR||Order Sugar|
```
Place your documentation into `docs/feature_<my_cool_feature>.md`, and add that file to the appropriate place in `docs/_summary.md`. If you have added any keycodes be sure to add them to `docs/keycodes.md` with a link back to your feature page.
This page documents the templates you should use when submitting new Keymaps and Keyboards to QMK.
## Keymap `readme.md` Template
Most keymaps have an image depicting the layout. You can use [Keyboard Layout Editor](http://keyboard-layout-editor.com) to create an image. Upload it to [Imgur](http://imgur.com) or another hosting service, please do not include images in your Pull Request.
Below the image you should write a short description to help people understand your keymap.
Make example for this keyboard (after setting up your build environment):
make planck/rev4:default
See [build environment setup](https://docs.qmk.fm/build_environment_setup.html) then the [make instructions](https://docs.qmk.fm/make_instructions.html) for more information.
```
There needs to be two spaces at the end of the `Keyboard Maintainer` and `Hardware Supported` lines for it to render correctly with Markdown.
[Eclipse](https://en.wikipedia.org/wiki/Eclipse_(software)) is an open-source [Integrated Development Environment](https://en.wikipedia.org/wiki/Integrated_development_environment) (IDE) widely used for Java development, but with an extensible plugin system that allows to customize it for other languages and usages.
Using an IDE such as Eclipse provides many advantages over a plain text editor, such as:
* intelligent code completion
* convenient navigation in the code
* refactoring tools
* build automation (no need for the command-line)
* a GUI for GIT
* static code analysis
* many other tools such as debugging, code formatting, showing call hierarchies etc.
The purpose of the is page is to document how to set-up Eclipse for developing AVR software, and working on the QMK code base.
Note that this set-up has been tested on Ubuntu 16.04 only for the moment.
# Prerequisites
## Build Environment
Before starting, you must have followed the [Getting Started](home.md#getting-started) section corresponding to your system. In particular, you must have been able to build the firmware with [the `make` command](../#the-make-command).
## Java
Eclipse is a Java application, so you will need to install Java 8 or more recent to be able to run it. You may choose between the JRE or the JDK, the latter being useful if you intend to do Java development.
# Install Eclipse and Its Plugins
Eclipse comes in [several flavours](http://www.eclipse.org/downloads/eclipse-packages/) depending on the target usage that you will have. There is no package comprising the AVR stack, so we will need to start from Eclipse CDT (C/C++ Development Tooling) and install the necessary plugins.
## Download and Install Eclipse CDT
If you already have Eclipse CDT on your system, you can skip this step. However it is advised to keep it up-to-date for better support.
If you have another Eclipse package installed, it is normally possible to [install the CDT plugin over it](https://eclipse.org/cdt/downloads.php). However it is probably better to reinstall it from scratch to keep it light and avoid the clutter of tools that you don't need for the projects you will be working on.
Installation is very simple: follow the [5 Steps to Install Eclipse](https://eclipse.org/downloads/eclipse-packages/?show_instructions=TRUE), and choose **Eclipse IDE for C/C++ Developers** at Step 3.
Alternatively, you can also directly [download Eclipse IDE for C/C++ Developers](http://www.eclipse.org/downloads/eclipse-packages/) ([direct link to current version](http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/neonr)) and extract the package to the location of your choice (this creates an `eclipse` folder).
## First Launch
When installation is complete, click the <kbd>Launch</kbd> button. (If you extracted the package manually, open the Eclipse installation folder and double-click the `eclipse` executable)
When you are prompted with the Workspace Selector, select a directory that will hold Eclipse metadata and usually your projects. **Do not select the `qmk_firmware` directory**, this will be the project directory. Select the parent folder instead, or another (preferably empty) folder of your choice (the default is fine if you do not use it yet).
Once started, click the <kbd>Workbench</kbd> button at the top right to switch to the workbench view (there is a also checkbox at the bottom to skip the welcome screen at startup).
## Install the Necessary Plugins
Note: you do not need to restart Eclipse after installing each plugin. Simply restart once all plugins are installed.
This is the most important plugin as it will allow Eclipse to _understand_ AVR C code. Follow [the instructions for using the update site](http://avr-eclipse.sourceforge.net/wiki/index.php/Plugin_Download#Update_Site), and agree with the security warning for unsigned content.
### [ANSI Escape in Console](https://marketplace.eclipse.org/content/ansi-escape-console)
This plugin is necessary to properly display the colored build output generated by the QMK makefile.
1. Open <kbd><kbd>Help</kbd> > <kbd>Eclipse Marketplace…</kbd></kbd>
2. Search for _ANSI Escape in Console_
3. Click the <samp>Install</samp> button of the plugin
4. Follow the instructions and agree again with the security warning for unsigned content.
Once both plugins are installed, restart Eclipse as prompted.
* Select the directory where you cloned the repository as _Existing Code Location_;
* (Optional) Give a different name to the project¹, e.g. _QMK_ or _Quantum_;
* Select the _AVR-GCC Toolchain_;
* Keep the rest as-is and click <kbd>Finish</kbd>

3. The project will now be loaded and indexed. Its files can be browsed easily through the _Project Explorer_ on the left.
¹ There might be issues for importing the project with a custom name. If it does not work properly, try leaving the default project name (i.e. the name of the directory, probably `qmk_firmware`).
## Build Your Keyboard
We will now configure a make target that cleans the project and builds the keymap of your choice.
1. On the right side of the screen, select the <kbd>Make Target</kbd> tab
2. Expand the folder structure to the keyboard of your choice, e.g. `qmk_firmware/keyboards/ergodox`
3. Right-click on the keyboard folder and select <kbd>New…</kbd> (or select the folder and click the <kbd>New Make Target</kbd> icon above the tree)
4. Choose a name for your build target, e.g. _clean \<your keymap\>_
5. Make Target: this is the arguments that you give to `make` when building from the command line. If your target name does not match these arguments, uncheck <kbd>Same as target name</kbd> and input the correct arguments, e.g. `clean <your keymap>`
6. Leave the other options checked and click <kbd>OK</kbd>. Your make target will now appear under the selected keyboard.
7. (Optional) Toggle the <kbd>Hide Empty Folders</kbd> icon button above the targets tree to only show your build target.
8. Double-click the build target you created to trigger a build.
9. Select the <kbd>Console</kbd> view at the bottom to view the running build.
This page covers questions about building QMK. If you have not yet you should read the [Build Environment Setup](getting_started_build_tools.md) and [Make Instructions](getting_started_make_guide.md) guides.
## Can't Program on Linux
You will need proper permission to operate a device. For Linux users see udev rules below. Easy way is to use `sudo` command, if you are not familiar with this command check its manual with `man sudo` or this page on line.
In short when your controller is ATMega32u4,
$ sudo dfu-programmer atmega32u4 erase --force
$ sudo dfu-programmer atmega32u4 flash your.hex
$ sudo dfu-programmer atmega32u4 reset
or just
$ sudo make <keyboard>:<keymap>:dfu
But to run `make` with root privilege is not good idea. Use former method if possible.
## WINAVR is Obsolete
It is no longer recommended and may cause some problem.
See [TMK Issue #99](https://github.com/tmk/tmk_keyboard/issues/99).
## USB VID and PID
You can use any ID you want with editing `config.h`. Using any presumably unused ID will be no problem in fact except for very low chance of collision with other product.
Most boards in QMK use `0xFEED` as the vendor ID. You should look through other keyboards to make sure you pick a unique Product ID.
Also see this.
https://github.com/tmk/tmk_keyboard/issues/150
You can buy a really unique VID:PID here. I don't think you need this for personal use.
On Linux you need proper privilege to access device file of MCU, you'll have to use `sudo` when flashing firmware. You can circumvent this with placing these files in `/etc/udev/rules.d/`.
- DFU tools do /not/ allow you to write into the bootloader (unless
you throw in extra fruit salad of options), so there is little risk
there.
- EEPROM has around a 100000 write cycle. You shouldn't rewrite the
firmware repeatedly and continually; that'll burn the EEPROM
eventually.
## NKRO Doesn't work
First you have to compile firmware with this build option `NKRO_ENABLE` in **Makefile**.
Try `Magic`**N** command(`LShift+RShift+N` by default) when **NKRO** still doesn't work. You can use this command to toggle between **NKRO** and **6KRO** mode temporarily. In some situations **NKRO** doesn't work you need to switch to **6KRO** mode, in particular when you are in BIOS.
If your firmware built with `BOOTMAGIC_ENABLE` you need to turn its switch on by `BootMagic`**N** command(`Space+N` by default). This setting is stored in EEPROM and kept over power cycles.
Use `1UL<<16` instead of `1<<16` in `read_cols()` in [matrix.h] when your columns goes beyond 16.
In C `1` means one of [int] type which is [16 bit] in case of AVR so you can't shift left more than 15. You will get unexpected zero when you say `1<<16`. You have to use [unsigned long] type with `1UL`.
If you are using a TeensyUSB, there is a [known bug](https://github.com/qmk/qmk_firmware/issues/164) in which the hardware reset button prevents the RESET key from working. Unplugging the keyboard and plugging it back in should resolve the problem.
## Special Extra Key Doesn't Work (System, Audio Control Keys)
You need to define `EXTRAKEY_ENABLE` in `rules.mk` to use them in QMK.
```
EXTRAKEY_ENABLE = yes # Audio control and System control
```
## Wakeup from Sleep Doesn't Work
In Windows check `Allow this device to wake the computer` setting in Power **Management property** tab of **Device Manager**. Also check BIOS setting.
Pressing any key during sleep should wake host.
## Using Arduino?
**Note that Arduino pin naming is different from actual chip.** For example, Arduino pin `D0` is not `PD0`. Check circuit with its schematics yourself.
Arduino Leonardo and micro have **ATMega32U4** and can be used for TMK, though Arduino bootloader may be a problem.
## Using PF4-7 Pins of USB AVR?
You need to set JTD bit of MCUCR yourself to use PF4-7 as GPIO. Those pins are configured to serve JTAG function by default. MCUs like ATMega*U* or AT90USB* are affected with this.
If you are using Teensy this isn't needed. Teensy is shipped with JTAGEN fuse bit unprogrammed to disable the function.
See this code.
```
// JTAG disable for PORT F. write JTD bit twice within four cycles.
## Problem on BIOS (UEFI)/Resume (Sleep & Wake)/Power Cycles
Some people reported their keyboard stops working on BIOS and/or after resume(power cycles).
As of now root of its cause is not clear but some build options seem to be related. In Makefile try to disable those options like `CONSOLE_ENABLE`, `NKRO_ENABLE`, `SLEEP_LED_ENABLE` and/or others.
[QMK](https://github.com/qmk), short for Quantum Mechanical Keyboard, is a group of people building tools for custom keyboards. We started with the [QMK firmware](https://github.com/qmk/qmk_firmware), a heavily modified fork of [TMK](https://github.com/tmk/tmk_keyboard).
### Why the Name Quantum?
<!-- FIXME -->
## What Differences Are There Between QMK and TMK?
TMK was originally designed and implemented by [Jun Wako](https://github.com/tmk). QMK started as [Jack Humbert](https://github.com/jackhumbert)'s fork of TMK for the Planck. After a while Jack's fork had diverged quite a bit from TMK, and in 2015 Jack decided to rename his fork to QMK.
From a technical standpoint QMK builds upon TMK by adding several new features. Most notably QMK has expanded the number of available keycodes and uses these to implement advanced features like `S()`, `LCTL()`, and `MO()`. You can see a complete list of these keycodes in [Keycodes](keycodes.md).
From a project and community management standpoint TMK maintains all the officially supported keyboards by himself, with a bit of community support. Separate community maintained forks exist or can be created for other keyboards. Only a few keymaps are provided by default, so users typically don't share keymaps with each other. QMK encourages sharing of both keyboards and keymaps through a centrally managed repository, accepting all pull requests that follow the quality standards. These are mostly community maintained, but the QMK team also helps when necessary.
Both approaches have their merits and their drawbacks, and code flows freely between TMK and QMK when it makes sense.
This page covers questions people often have about keymaps. If you haven't you should read [Keymap Overview](keymap.md) first.
## What Keycodes Can I Use?
See [Keycodes](keycodes.md) for an index of keycodes available to you. These link to more extensive documentation when available.
Keycodes are actually defined in [common/keycode.h](https://github.com/qmk/qmk_firmware/blob/master/tmk_core/common/keycode.h).
## What Are the Default Keycodes?
There are 3 standard keyboard layouts in use around the world- ANSI, ISO, and JIS. North America primarily uses ANSI, Europe and Africa primarily use ISO, and Japan uses JIS. Regions not mentioned typically use either ANSI or ISO. The keycodes corresponding to these layouts are shown here:
<!-- Source for this image: http://www.keyboard-layout-editor.com/#/gists/9ce023dc6caadc0cf11c88c782350a8c -->
The key found on most modern keyboards that is located between `KC_RGUI` and `KC_RCTL` is actually called `KC_APP`. This is because when that key was invented there was already a key named `MENU` in the relevant standards, so MS chose to call that the `APP` key.
## `KC_SYSREQ` Isn't Working
Use keycode for Print Screen(`KC_PSCREEN` or `KC_PSCR`) instead of `KC_SYSREQ`. Key combination of 'Alt + Print Screen' is recognized as 'System request'.
See [issue #168](https://github.com/tmk/tmk_keyboard/issues/168) and
- http://en.wikipedia.org/wiki/Magic_SysRq_key
- http://en.wikipedia.org/wiki/System_request
## Power Key Doesn't Work
Use `KC_PWR` instead of `KC_POWER` or vice versa.
-`KC_PWR` works with Windows and Linux, not with OSX.
-`KC_POWER` works with OSX and Linux, not with Windows.
More info: http://geekhack.org/index.php?topic=14290.msg1327264#msg1327264
## One Shot Modifier
Solves my personal 'the' problem. I often got 'the' or 'THe' wrongly instead of 'The'. One Shot Shift mitigates this for me.
https://github.com/tmk/tmk_keyboard/issues/67
## Modifier/Layer Stuck
Modifier keys or layers can be stuck unless layer switching is configured properly.
For Modifier keys and layer actions you have to place `KC_TRANS` on same position of destination layer to unregister the modifier key or return to previous layer on release event.
This feature is for *mechanical lock switch* like [this Alps one](http://deskthority.net/wiki/Alps_SKCL_Lock). You can enable it by adding this to your `config.h`:
```
#define LOCKING_SUPPORT_ENABLE
#define LOCKING_RESYNC_ENABLE
```
After enabling this feature use keycodes `KC_LCAP`, `KC_LNUM` and `KC_LSCR` in your keymap instead.
Old vintage mechanical keyboards occasionally have lock switches but modern ones don't have. ***You don't need this feature in most case and just use keycodes `KC_CAPS`, `KC_NLCK` and `KC_SLCK`.***
## Input Special Characters Other Than ASCII like Cédille 'Ç'
NO UNIVERSAL METHOD TO INPUT THOSE WORKS OVER ALL SYSTEMS. You have to define **MACRO** in way specific to your OS or layout.
Apple/Mac keyboard sends keycode for Fn unlike most of other keyboards.
I think you can send Apple Fn key using Apple venter specific Page 0xff01 and usage 0x0003. But you have to change HID Report Descriptor for this, of course.
Japanese JIS keyboard specific keys like `無変換(Muhenkan)`, `変換(Henkan)`, `ひらがな(hiragana)` are not recognized on OSX. You can use **Seil** to enable those keys, try following options.
* Enable NFER Key on PC keyboard
* Enable XFER Key on PC keyboard
* Enable KATAKANA Key on PC keyboard
https://pqrs.org/osx/karabiner/seil.html
## RN-42 Bluetooth Doesn't Work with Karabiner
Karabiner - Keymapping tool on Mac OSX - ignores inputs from RN-42 module by default. You have to enable this option to make Karabiner working with your keyboard.
See the [Grave Escape](feature_grave_esc.md) feature.
## Arrow on Right Modifier Keys with Dual-Role
This turns right modifier keys into arrow keys when the keys are tapped while still modifiers when the keys are hold. In TMK the dual-role function is dubbed **TAP**.
```
#include "keymap_common.h"
/* Arrow keys on right modifier keys with TMK dual role feature
`KC_EJCT` keycode works on OSX. https://github.com/tmk/tmk_keyboard/issues/250
It seems Windows 10 ignores the code and Linux/Xorg recognizes but has no mapping by default.
Not sure what keycode Eject is on genuine Apple keyboard actually. HHKB uses `F20` for Eject key(`Fn+f`) on Mac mode but this is not same as Apple Eject keycode probably.
## What's `weak_mods` and `real_mods` in `action_util.c`
___TO BE IMPROVED___
real_mods is intended to retains state of real/physical modifier key state, while
weak_mods retains state of virtual or temporary modifiers which should not affect state real modifier key.
Let's say you hold down physical left shift key and type ACTION_MODS_KEY(LSHIFT, KC_A),
with weak_mods,
* (1) hold down left shift: real_mods |= MOD_BIT(LSHIFT)
Your keymap can include keycodes that are more advanced than normal, for example shifted keys. This page documents the functions that are available to you.
### Assigning Custom Names
People often define custom names using `#define`. For example:
```c
#define FN_CAPS LT(_FL, KC_CAPSLOCK)
#define ALT_TAB LALT(KC_TAB)
```
This will allow you to use `FN_CAPS` and `ALT_TAB` in your `KEYMAP()`, keeping it more readable.
### Limits of These Aliases
Currently, the keycodes able to used with these functions are limited to the [Basic Keycodes](keycodes_basic.md), meaning you can't use keycodes like `KC_TILD`, or anything greater than 0xFF. For a full list of the keycodes able to be used see [Basic Keycodes](keycodes_basic.md).
# Switching and Toggling Layers
These functions allow you to activate layers in various ways.
*`MO(layer)` - momentary switch to *layer*. As soon as you let go of the key, the layer is deactivated and you pop back out to the previous layer.
*`LT(layer, kc)` - momentary switch to *layer* when held, and *kc* when tapped.
*`TG(layer)` - toggles a layer on or off.
*`TO(layer)` - Goes to a layer. This code is special, because it lets you go either up or down the stack -- just goes directly to the layer you want. So while other codes only let you go _up_ the stack (from layer 0 to layer 3, for example), `TO(2)` is going to get you to layer 2, no matter where you activate it from -- even if you're currently on layer 5. This gets activated on keydown (as soon as the key is pressed).
*`TT(layer)` - Layer Tap-Toggle. If you hold the key down, the layer becomes active, and then deactivates when you let go. And if you tap it, the layer simply becomes active (toggles on). It needs 5 taps by default, but you can set it by defining `TAPPING_TOGGLE`, for example, `#define TAPPING_TOGGLE 2` for just two taps.
# Working with Layers
Care must be taken when switching layers, it's possible to lock yourself into a layer with no way to deactivate that layer (without unplugging your keyboard.) We've created some guidelines to help users avoid the most common problems.
### Beginners
If you are just getting started with QMK you will want to keep everything simple. Follow these guidelines when setting up your layers:
* Setup layer 0 as your "base" layer. This is your normal typing layer, and could be whatever layout you want (qwerty, dvorak, colemak, etc.)
* Arrange your layers in a "tree" layout, with layer 0 as the root. Do not try to enter the same layer from more than one other layer.
* Never try to stack a higher numbered layer on top of a lower numbered layer. Doing so is tricky and error prone.
### Intermediate Users
Sometimes you need more than one base layer. For example, if you want to switch between QWERTY and Dvorak, switch between layouts for different countries, or switch your layout for different videogames. Your base layers should always be the lowest numbered layers. When you have multiple base layers you should always treat them as mutually exclusive. When one base layer is on the others are off.
### Advanced Users
Once you have a good feel for how layers work and what you can do, you can get more creative. The rules listed in the beginner section will help you be successful by avoiding some of the tricker details but they can be constraining, especially for ultra-compact keyboard users. Understanding how layers work will allow you to use them in more advanced ways.
Layers stack on top of each other in numerical order. When determining what a keypress does, QMK scans the layers from the top down, stopping when it reaches the first active layer that is not set to `KC_TRNS`. As a result if you activate a layer that is numerically lower than your current layer, and your current layer (or another layer that is active and higher than your target layer) has something other than `KC_TRNS`, that is the key that will be sent, not the key on the layer you just activated. This is the cause of most people's "why doesn't my layer get switched" problem.
Sometimes, you might want to switch between layers in a macro or as part of a tap dance routine. `layer_on` activates a layer, and `layer_off` deactivates it. More layer-related functions can be found in [action_layer.h](../tmk_core/common/action_layer.h).
# Modifier Keys
These functions allow you to combine a mod with a keycode. When pressed the keydown for the mod will be sent first, and then *kc* will be sent. When released the keyup for *kc* will be sent and then the mod will be sent.
*`LSFT(kc)` or `S(kc)` - applies left Shift to *kc* (keycode)
*`RSFT(kc)` - applies right Shift to *kc*
*`LCTL(kc)` - applies left Control to *kc*
*`RCTL(kc)` - applies right Control to *kc*
*`LALT(kc)` - applies left Alt to *kc*
*`RALT(kc)` - applies right Alt to *kc*
*`LGUI(kc)` - applies left GUI (command/win) to *kc*
*`RGUI(kc)` - applies right GUI (command/win) to *kc*
*`HYPR(kc)` - applies Hyper (all modifiers) to *kc*
*`MEH(kc)` - applies Meh (all modifiers except Win/Cmd) to *kc*
*`LCAG(kc)` - applies CtrlAltGui to *kc*
You can also chain these, like this:
LALT(LCTL(KC_DEL)) -- this makes a key that sends Alt, Control, and Delete in a single keypress.
# Shifted Keycodes
The following shortcuts automatically add `LSFT()` to keycodes to get commonly used symbols.
`MT(mod, kc)` - is *mod* (modifier key - MOD_LCTL, MOD_LSFT) when held, and *kc* when tapped. In other words, you can have a key that sends Esc (or the letter O or whatever) when you tap it, but works as a Control key or a Shift key when you hold it down.
These are the values you can use for the `mod` in `MT()` and `OSM()`:
* MOD_LCTL
* MOD_LSFT
* MOD_LALT
* MOD_LGUI
* MOD_RCTL
* MOD_RSFT
* MOD_RALT
* MOD_RGUI
* MOD_HYPR
* MOD_MEH
These can also be combined like `MOD_LCTL | MOD_LSFT` e.g. `MT(MOD_LCTL | MOD_LSFT, KC_ESC)` which would activate Control and Shift when held, and send Escape when tapped. Note however, that you cannot mix right and left side modifiers.
We've added shortcuts to make common modifier/tap (mod-tap) mappings more compact:
*`CTL_T(kc)` - is LCTL when held and *kc* when tapped
*`SFT_T(kc)` - is LSFT when held and *kc* when tapped
*`ALT_T(kc)` - is LALT when held and *kc* when tapped
*`ALGR_T(kc)` - is AltGr when held and *kc* when tapped
*`GUI_T(kc)` - is LGUI when held and *kc* when tapped
*`ALL_T(kc)` - is Hyper (all mods) when held and *kc* when tapped. To read more about what you can do with a Hyper key, see [this blog post by Brett Terpstra](http://brettterpstra.com/2012/12/08/a-useful-caps-lock-key/)
*`LCAG_T(kc)` - is CtrlAltGui when held and *kc* when tapped
*`MEH_T(kc)` - is like Hyper, but not as cool -- does not include the Cmd/Win key, so just sends Alt+Ctrl+Shift.
# One Shot Keys
One shot keys are keys that remain active until the next key is pressed, and then are released. This allows you to type keyboard combinations without pressing more than one key at a time. These keys are usually called "Sticky keys" or "Dead keys".
For example, if you define a key as `OSM(MOD_LSFT)`, you can type a capital A character by first pressing and releasing shift, and then pressing and releasing A. Your computer will see the shift key being held the moment shift is pressed, and it will see the shift key being released immediately after A is released.
One shot keys also work as normal modifiers. If you hold down a one shot key and type other keys, your one shot will be released immediately after you let go of the key.
You can control the behavior of one shot keys by defining these in `config.h`:
```c
#define ONESHOT_TAP_TOGGLE 5 /* Tapping this number of times holds the key until tapped this number of times again. */
#define ONESHOT_TIMEOUT 5000 /* Time (in ms) before the one shot key is released */
```
*`OSM(mod)` - Momentarily hold down *mod*. You must use the `MOD_*` keycodes as shown in [Mod Tap](#mod-tap), not the `KC_*` codes.
*`OSL(layer)` - momentary switch to *layer*.
Sometimes, you want to activate a one-shot layer as part of a macro or tap dance routine. To do this, you need to call `set_oneshot_layer(LAYER, ONESHOT_START)` on key down, and `set_oneshot_layer(ONESHOT_PRESSED)` on key up. If you want to cancel the oneshot, call `reset_oneshot_layer()`. For more complicated actions, take a look at the oneshot implementation in [`process_record`](../tmk_core/common/action.c#L429).
## Permissive Hold
As of [PR#1359](https://github.com/qmk/qmk_firmware/pull/1359/), there is a new `config.h` option:
```
#define PERMISSIVE_HOLD
```
This makes it easier for fast typists to use dual-function keys. Without this, if you let go of a held key inside the tapping term, it won't register.
Example: (Tapping Term = 200ms)
- SHFT_T(KC_A) Down
- KC_X Down
- KC_X Up
- SHFT_T(KC_A) Up
With defaults, if above is typed within tapping term, this will emit `ax`. With permissive hold, if above is typed within tapping term, this will emit `X` (so, Shift+X).
Your keyboard can make sounds! If you've got a Planck, Preonic, or basically any AVR keyboard that allows access to the C6 or B5 port (`#define C6_AUDIO` and/or `#define B5_AUDIO`), you can hook up a simple speaker and make it beep. You can use those beeps to indicate layer transitions, modifiers, special keys, or just to play some funky 8bit tunes.
If you add `AUDIO_ENABLE = yes` to your `rules.mk`, there's a couple different sounds that will automatically be enabled without any other configuration:
```
STARTUP_SONG // plays when the keyboard starts up (audio.c)
GOODBYE_SONG // plays when you press the RESET key (quantum.c)
AG_NORM_SONG // plays when you press AG_NORM (quantum.c)
AG_SWAP_SONG // plays when you press AG_SWAP (quantum.c)
MUSIC_ON_SONG // plays when music mode is activated (process_music.c)
MUSIC_OFF_SONG // plays when music mode is deactivated (process_music.c)
CHROMATIC_SONG // plays when the chromatic music mode is selected (process_music.c)
GUITAR_SONG // plays when the guitar music mode is selected (process_music.c)
VIOLIN_SONG // plays when the violin music mode is selected (process_music.c)
MAJOR_SONG // plays when the major music mode is selected (process_music.c)
```
You can override the default songs by doing something like this in your `config.h`:
```c
#ifdef AUDIO_ENABLE
#define STARTUP_SONG SONG(STARTUP_SOUND)
#endif
```
A full list of sounds can be found in [quantum/audio/song_list.h](https://github.com/qmk/qmk_firmware/blob/master/quantum/audio/song_list.h) - feel free to add your own to this list! All available notes can be seen in [quantum/audio/musical_notes.h](https://github.com/qmk/qmk_firmware/blob/master/quantum/audio/musical_notes.h).
To play a custom sound at a particular time, you can define a song like this (near the top of the file):
```c
floatmy_song[][2]=SONG(QWERTY_SOUND);
```
And then play your song like this:
```c
PLAY_SONG(my_song);
```
Alternatively, you can play it in a loop like this:
```c
PLAY_LOOP(my_song);
```
It's advised that you wrap all audio features in `#ifdef AUDIO_ENABLE` / `#endif` to avoid causing problems when audio isn't built into the keyboard.
## Music Mode
The music mode maps your columns to a chromatic scale, and your rows to octaves. This works best with ortholinear keyboards, but can be made to work with others. All keycodes less than `0xFF` get blocked, so you won't type while playing notes - if you have special keys/mods, those will still work. A work-around for this is to jump to a different layer with KC_NOs before (or after) enabling music mode.
Recording is experimental due to some memory issues - if you experience some weird behavior, unplugging/replugging your keyboard will fix things.
Keycodes available:
*`MU_ON` - Turn music mode on
*`MU_OFF` - Turn music mode off
*`MU_TOG` - Toggle music mode
*`MU_MOD` - Cycle through the music modes:
*`CHROMATIC_MODE` - Chromatic scale, row changes the octave
*`GUITAR_MODE` - Chromatic scale, but the row changes the string (+5 st)
*`VIOLIN_MODE` - Chromatic scale, but the row changes the string (+7 st)
*`MAJOR_MODE` - Major scale
In music mode, the following keycodes work differently, and don't pass through:
*`LCTL` - start a recording
*`LALT` - stop recording/stop playing
*`LGUI` - play recording
*`KC_UP` - speed-up playback
*`KC_DOWN` - slow-down playback
By default, `MUSIC_MASK` is set to `keycode < 0xFF` which means keycodes less than `0xFF` are turned into notes, and don't output anything. You can change this by defining this in your `config.h` like this:
#define MUSIC_MASK keycode != KC_NO
Which will capture all keycodes - be careful, this will get you stuck in music mode until you restart your keyboard!
The pitch standard (`PITCH_STANDARD_A`) is 440.0f by default - to change this, add something like this to your `config.h`:
#define PITCH_STANDARD_A 432.0f
## MIDI Functionality
This is still a WIP, but check out `quantum/keymap_midi.c` to see what's happening. Enable from the Makefile.
Tap a key and you get its character. Tap a key, but hold it *slightly* longer
and you get its shifted state. Viola! No shift key needed!
## Why Auto Shift?
Many people suffer from various forms of RSI. A common cause is stretching your
fingers repetitively long distances. For us on the keyboard, the pinky does that
all too often when reaching for the shift key. Auto Shift looks to alleviate that
problem.
## How Does It Work?
When you tap a key, it stays depressed for a short period of time before it is
then released. This depressed time is a different length for everyone. Auto Shift
defines a constant `AUTO_SHIFT_TIMEOUT` which is typically set to twice your
normal pressed state time. When you press a key, a timer starts and then stops
when you release the key. If the time depressed is greater than or equal to the
`AUTO_SHIFT_TIMEOUT`, then a shifted version of the key is emitted. If the time
is less than the `AUTO_SHIFT_TIMEOUT` time, then the normal state is emitted.
## Are There Limitations to Auto Shift?
Yes, unfortunately.
1. Key repeat will cease to work. For example, before if you wanted 20 'a'
characters, you could press and hold the 'a' key for a second or two. This no
longer works with Auto Shift because it is timing your depressed time instead
of emitting a depressed key state to your operating system.
2. Auto Shift is disabled for any key press that is accompanied by one or more
modifiers. Thus, Ctrl+A that you hold for a really long time is not the same
as Ctrl+Shift+A.
3. You will have characters that are shifted when you did not intend on shifting, and
other characters you wanted shifted, but were not. This simply comes down to
practice. As we get in a hurry, we think we have hit the key long enough
for a shifted version, but we did not. On the other hand, we may think we are
tapping the keys, but really we have held it for a little longer than
anticipated.
## How Do I Enable Auto Shift?
Add to your `rules.mk` in the keymap folder:
AUTO_SHIFT_ENABLE = yes
If no `rules.mk` exists, you can create one.
Then compile and install your new firmware with Auto Key enabled! That's it!
## Configuring Auto Shift
If desired, there is some configuration that can be done to change the
behavior of Auto Shift. This is done by setting various variables the
`config.h` file located in your keymap folder. If no `config.h` file exists, you can create one.
A sample is
#ifndef CONFIG_USER_H
#define CONFIG_USER_H
#include "../../config.h"
#define AUTO_SHIFT_TIMEOUT 150
#define NO_AUTO_SHIFT_SPECIAL
#endif
### AUTO_SHIFT_TIMEOUT (Value in ms)
This controls how long you have to hold a key before you get the shifted state.
Obviously, this is different for everyone. For the common person, a setting of
135 to 150 works great. However, one should start with a value of at least 175, which
is the default value. Then work down from there. The idea is to have the shortest time required to get the shifted state without having false positives.
Play with this value until things are perfect. Many find that all will work well
at a given value, but one or two keys will still emit the shifted state on
occasion. This is simply due to habit and holding some keys a little longer
than others. Once you find this value, work on tapping your problem keys a little
quicker than normal and you will be set.
{% hint style='info' %}
Auto Shift has three special keys that can help you get this value right very
quick. See "Auto Shift Setup" for more details!
{% endhint %}
### NO_AUTO_SHIFT_SPECIAL (simple define)
Do not Auto Shift special keys, which include -\_, =+, [{, ]}, ;:, '", ,<, .>,
and /?
### NO_AUTO_SHIFT_NUMERIC (simple define)
Do not Auto Shift numeric keys, zero through nine.
### NO_AUTO_SHIFT_ALPHA (simple define)
Do not Auto Shift alpha characters, which include A through Z.
## Using Auto Shift Setup
This will enable you to define three keys temporarily to increase, decrease and report your `AUTO_SHIFT_TIMEOUT`.
This requires [some hardware changes](https://www.reddit.com/r/MechanicalKeyboards/comments/3psx0q/the_planck_keyboard_with_bluetooth_guide_and/?ref=search_posts), but can be enabled via the Makefile. The firmware will still output characters via USB, so be aware of this when charging via a computer. It would make sense to have a switch on the Bluefruit to turn it off at will.
<!-- FIXME: Document bluetooth support more completely. -->
## Bluetooth Keycodes
This is used when multiple keyboard outputs can be selected. Currently this only allows for switching between USB and Bluetooth on keyboards that support both.
# Dynamic Macros: Record and Replay Macros in Runtime
QMK supports temporary macros created on the fly. We call these Dynamic Macros. They are defined by the user from the keyboard and are lost when the keyboard is unplugged or otherwise rebooted.
You can store one or two macros and they may have a combined total of 128 keypresses. You can increase this size at the cost of RAM.
To enable them, first add a new element to the `planck_keycodes` enum — `DYNAMIC_MACRO_RANGE`:
```c
enumplanck_keycodes{
QWERTY=SAFE_RANGE,
COLEMAK,
DVORAK,
PLOVER,
LOWER,
RAISE,
BACKLIT,
EXT_PLV,
DYNAMIC_MACRO_RANGE,
};
```
It must be the last element because `dynamic_macros.h` will add some more keycodes after it.
Below it, include the `dynamic_macro.h` header:
```c
#include"dynamic_macro.h"`
```
Add the following keys to your keymap:
*`DYN_REC_START1` — start recording the macro 1,
*`DYN_REC_START2` — start recording the macro 2,
*`DYN_MACRO_PLAY1` — replay the macro 1,
*`DYN_MACRO_PLAY2` — replay the macro 2,
*`DYN_REC_STOP` — finish the macro that is currently being recorded.
Add the following code to the very beginning of your `process_record_user()` function:
That should be everything necessary. To start recording the macro, press either `DYN_REC_START1` or `DYN_REC_START2`. To finish the recording, press the `DYN_REC_STOP` layer button. To replay the macro, press either `DYN_MACRO_PLAY1` or `DYN_MACRO_PLAY2`.
Note that it's possible to replay a macro as part of a macro. It's ok to replay macro 2 while recording macro 1 and vice versa but never create recursive macros i.e. macro 1 that replays macro 1. If you do so and the keyboard will get unresponsive, unplug the keyboard and plug it again.
For users of the earlier versions of dynamic macros: It is still possible to finish the macro recording using just the layer modifier used to access the dynamic macro keys, without a dedicated `DYN_REC_STOP` key. If you want this behavior back, use the following snippet instead of the one above:
If the LEDs start blinking during the recording with each keypress, it means there is no more space for the macro in the macro buffer. To fit the macro in, either make the other macro shorter (they share the same buffer) or increase the buffer size by setting the `DYNAMIC_MACRO_SIZE` preprocessor macro (default value: 128; please read the comments for it in the header).
For the details about the internals of the dynamic macros, please read the comments in the `dynamic_macro.h` header.
Grave Escape is a feature that allows you to share the grave key (<code>`</code> and `~`) on the same key as Escape. When `KC_GESC` is used it will act as `KC_ESC`, unless Shift or GUI is pressed, in which case it will act as `KC_GRAVE`.
|`KC_GESC`|`GRAVE_ESC`|Escape when pressed, <code>`</code> when Shift or GUI are held|
There are several possible key combinations this will break, among them Ctrl+Shift+Esc on Windows and Cmd+Opt+Esc on macOS. You can use these options in your `config.h` to work around this:
| Option | Description |
|--------|-------------|
| `GRAVE_ESC_ALT_OVERRIDE` | Always send Escape if Alt is pressed. |
| `GRAVE_ESC_CTRL_OVERRIDE` | Always send Escape if Ctrl is pressed. |
| `GRAVE_ESC_GUI_OVERRIDE` | Always send Escape if GUI is pressed. |
| `GRAVE_ESC_SHIFT_OVERRIDE` | Always send Escape if SHIFT is pressed. |
Sometimes, you need to hold down a specific key for a long period of time. Whether this is while typing in ALL CAPS, or playing a video game that hasn't implemented auto-run, Key Lock is here to help. Key Lock adds a new keycode, `KC_LOCK`, that will hold down the next key you hit for you. The key is released when you hit it again. Here's an example: let's say you need to type in all caps for a few sentences. You hit KC_LOCK, and then shift. Now, shift will be considered held until you hit it again. You can think of key lock as caps lock, but supercharged.
Here's how to use it:
1. Pick a key on your keyboard. This will be the key lock key. Assign it the keycode `KC_LOCK`. This will be a single-action key: you won't be able to use it for anything else.
2. Enable key lock by including `KEY_LOCK_ENABLE = yes` in your Makefile.
3. That's it!
Important: switching layers does not cancel the key lock. Additionally, key lock is only able to hold standard action keys and One Shot modifier keys (for example, if you have your shift defined as `OSM(KC_LSFT)`; see [One Shot Keys](quantum_keycodes.md#one-shot-keys)). This does not include any of the QMK special functions (except One Shot modifiers), or shifted versions of keys such as KC_LPRN. If it's in the [Basic Keycodes](keycodes_basic.md) list, it can be held. If it's not, then it can't be.
The `layouts/` folder contains different physical key layouts that can apply to different keyboards.
```
layouts/
+ default/
| + 60_ansi/
| | + readme.md
| | + layout.json
| | + a_good_keymap/
| | | + keymap.c
| | | + readme.md
| | | + config.h
| | | + rules.mk
| | + <keymap folder>/
| | + ...
| + <layout folder>/
+ community/
| + <layout folder>/
| + ...
```
The `layouts/default/` and `layouts/community/` are two examples of layout "repositories" - currently `default` will contain all of the information concerning the layout, and one default keymap named `default_<layout>`, for users to use as a reference. `community` contains all of the community keymaps, with the eventual goal of being split-off into a separate repo for users to clone into `layouts/`. QMK searches through all folders in `layouts/`, so it's possible to have multiple repositories here.
Each layout folder is named (`[a-z0-9_]`) after the physical aspects of the layout, in the most generic way possible, and contains a `readme.md` with the layout to be defined by the keyboard:
```md
# 60_ansi
LAYOUT_60_ansi
```
New names should try to stick to the standards set by existing layouts, and can be discussed in the PR/Issue.
## Supporting a Layout
For a keyboard to support a layout, the variable must be defined in it's `<keyboard>.h`, and match the number of arguments/keys (and preferably the physical layout):
#define LAYOUT_60_ansi KEYMAP_ANSI
The name of the layout must match this regex: `[a-z0-9_]+`
The folder name must be added to the keyboard's `rules.mk`:
LAYOUTS = 60_ansi
`LAYOUTS` can be set in any keyboard folder level's `rules.mk`:
LAYOUTS = 60_iso
but the `LAYOUT_<layout>` variable must be defined in `<folder>.h` as well.
## Tips for Making Layouts Keyboard-Agnostic
Instead of using `#include "planck.h"`, you can use this line to include whatever `<keyboard>.h` (`<folder>.h` should not be included here) file that is being compiled:
#include QMK_KEYBOARD_H
If you want to keep some keyboard-specific code, you can use these variables to escape it with an `#ifdef` statement:
*`KEYBOARD_<folder1>_<folder2>`
For example:
```c
#ifdef KEYBOARD_planck
#ifdef KEYBOARD_planck_rev4
planck_rev4_function();
#endif
#endif
```
Note that the names are lowercase and match the folder/file names for the keyboard/revision exactly.
If you've ever used Vim, you know what a Leader key is. If not, you're about to discover a wonderful concept. :) Instead of hitting Alt+Shift+W for example (holding down three keys at the same time), what if you could hit a _sequence_ of keys instead? So you'd hit our special modifier (the Leader key), followed by W and then C (just a rapid succession of keys), and something would happen.
That's what `KC_LEAD` does. Here's an example:
1. Pick a key on your keyboard you want to use as the Leader key. Assign it the keycode `KC_LEAD`. This key would be dedicated just for this -- it's a single action key, can't be used for anything else.
2. Include the line `#define LEADER_TIMEOUT 300` somewhere in your keymap.c file, probably near the top. The 300 there is 300ms -- that's how long you have for the sequence of keys following the leader. You can tweak this value for comfort, of course.
3. Within your `matrix_scan_user` function, do something like this:
```
LEADER_EXTERNS();
void matrix_scan_user(void) {
LEADER_DICTIONARY() {
leading = false;
leader_end();
SEQ_ONE_KEY(KC_F) {
register_code(KC_S);
unregister_code(KC_S);
}
SEQ_TWO_KEYS(KC_A, KC_S) {
register_code(KC_H);
unregister_code(KC_H);
}
SEQ_THREE_KEYS(KC_A, KC_S, KC_D) {
register_code(KC_LGUI);
register_code(KC_S);
unregister_code(KC_S);
unregister_code(KC_LGUI);
}
}
}
```
As you can see, you have three function. you can use - `SEQ_ONE_KEY` for single-key sequences (Leader followed by just one key), and `SEQ_TWO_KEYS` and `SEQ_THREE_KEYS` for longer sequences. Each of these accepts one or more keycodes as arguments. This is an important point: You can use keycodes from **any layer on your keyboard**. That layer would need to be active for the leader macro to fire, obviously.
Macros allow you to send multiple keystrokes when pressing just one key. QMK has a number of ways to define and use macros. These can do anything you want: type common phrases for you, copypasta, repetitive game movements, or even help you code.
{% hint style='danger' %}
**Security Note**: While it is possible to use macros to send passwords, credit card numbers, and other sensitive information it is a supremely bad idea to do so. Anyone who gets a hold of your keyboard will be able to access that information by opening a text editor.
{% endhint %}
## The New Way: `SEND_STRING()` & `process_record_user`
Sometimes you just want a key to type out words or phrases. For the most common situations we've provided `SEND_STRING()`, which will type out your string (i.e. a sequence of characters) for you. All ASCII characters that are easily translated to a keycode are supported (e.g. `\n\t`).
Here is an example `keymap.c` for a two-key keyboard:
We first define a new custom keycode in the range not occupied by any other keycodes.
Then we use the `process_record_user` function, which is called whenever a key is pressed or released, to check if our custom keycode has been activated.
If yes, we send the string `"QMK is the best thing ever!"` to the computer via the `SEND_STRING` macro (this is a C preprocessor macro, not to be confused with QMK macros).
We return `false` to indicate to the caller that the key press we just processed need not be processed any further.
Finally, we define the keymap so that the first button activates our macro and the second button is just an escape button.
You might want to add more than one macro.
You can do that by adding another keycode and adding another case to the switch statement, like so:
You may want to use keys in your macros that you can't write down, such as `Ctrl` or `Home`.
You can send arbitrary keycodes by wrapping them in:
*`SS_TAP()` presses and releases a key.
*`SS_DOWN()` presses (but does not release) a key.
*`SS_UP()` releases a key.
For example:
SEND_STRING(SS_TAP(X_HOME));
Would tap `KC_HOME` - note how the prefix is now `X_`, and not `KC_`. You can also combine this with other strings, like this:
SEND_STRING("VE"SS_TAP(X_HOME)"LO");
Which would send "VE" followed by a `KC_HOME` tap, and "LO" (spelling "LOVE" if on a newline).
There's also a couple of mod shortcuts you can use:
*`SS_LCTRL(string)`
*`SS_LGUI(string)`
*`SS_LALT(string)`
*`SS_LSFT(string)`
These press the respective modifier, send the supplied string and then release the modifier.
They can be used like this:
SEND_STRING(SS_LCTRL("a"));
Which would send LCTRL+a (LCTRL down, a, LCTRL up) - notice that they take strings (eg `"k"`), and not the `X_K` keycodes.
### Alternative Keymaps
By default, it assumes a US keymap with a QWERTY layout; if you want to change that (e.g. if your OS uses software Colemak), include this somewhere in your keymap:
#include<sendstring_colemak.h>
### Strings in Memory
If for some reason you're manipulating strings and need to print out something you just generated (instead of being a literal, constant string), you can use `send_string()`, like this:
```c
charmy_str[4]="ok.";
send_string(my_str);
```
The shortcuts defined above won't work with `send_string()`, but you can separate things out to different lines if needed:
```c
charmy_str[4]="ok.";
SEND_STRING("I said: ");
send_string(my_str);
SEND_STRING(".."SS_TAP(X_END));
```
## The Old Way: `MACRO()` & `action_get_macro`
{% hint style='info' %}
This is inherited from TMK, and hasn't been updated - it's recommend that you use `SEND_STRING` and `process_record_user` instead.
{% endhint %}
By default QMK assumes you don't have any macros. To define your macros you create an `action_get_macro()` function. For example:
This defines two macros which will be run when the key they are assigned to is pressed. If instead you'd like them to run when the key is released you can change the if statement:
if (!record->event.pressed) {
### Macro Commands
A macro can include the following commands:
* I() change interval of stroke in milliseconds.
* D() press key.
* U() release key.
* T() type key(press and release).
* W() wait (milliseconds).
* END end mark.
### Mapping a Macro to a Key
Use the `M()` function within your `KEYMAP()` to call a macro. For example, here is the keymap for a 2-key keyboard:
When you press the key on the left it will type "Hi!" and when you press the key on the right it will type "Bye!".
### Naming Your Macros
If you have a bunch of macros you want to refer to from your keymap while keeping the keymap easily readable you can name them using `#define` at the top of your file.
There are some functions you may find useful in macro-writing. Keep in mind that while you can write some fairly advanced code within a macro if your functionality gets too complex you may want to define a custom keycode instead. Macros are meant to be simple.
### `record->event.pressed`
This is a boolean value that can be tested to see if the switch is being pressed or released. An example of this is
```c
if(record->event.pressed){
// on keydown
}else{
// on keyup
}
```
### `register_code(<kc>);`
This sends the `<kc>` keydown event to the computer. Some examples would be `KC_ESC`, `KC_C`, `KC_4`, and even modifiers such as `KC_LSFT` and `KC_LGUI`.
### `unregister_code(<kc>);`
Parallel to `register_code` function, this sends the `<kc>` keyup event to the computer. If you don't use this, the key will be held down until it's sent.
### `clear_keyboard();`
This will clear all mods and keys currently pressed.
### `clear_mods();`
This will clear all mods currently pressed.
### `clear_keyboard_but_mods();`
This will clear all keys besides the mods currently pressed.
## Advanced Example: Single-Key Copy/Paste
This example defines a macro which sends `Ctrl-C` when pressed down, and `Ctrl-V` when released.
Mousekeys is a feature that allows you to emulate a mouse using your keyboard. You can move the pointer around, click up to 5 buttons, and even scroll in all 4 directions. QMK uses the same algorithm as the X Window System MouseKeysAccel feature. You can read more about it [on Wikipedia](https://en.wikipedia.org/wiki/Mouse_keys).
## Adding Mousekeys to a Keymap
There are two steps to adding Mousekeys support to your keyboard. You must enable support in the Makefile and you must map mouse actions to keys on your keyboard.
### Adding Mousekeys Support in the `Makefile`
To add support for Mousekeys you simply need to add a single line to your keymap's `Makefile`:
```
MOUSEKEY_ENABLE = yes
```
You can see an example here: https://github.com/qmk/qmk_firmware/blob/master/keyboards/clueboard/keymaps/mouse_keys/Makefile
### Mapping Mouse Actions to Keyboard Keys
You can use these keycodes within your keymap to map button presses to mouse actions:
|`KC_MS_ACCEL0` |`KC_ACL0`|Set mouse acceleration to 0|
|`KC_MS_ACCEL1` |`KC_ACL1`|Set mouse acceleration to 1|
|`KC_MS_ACCEL2` |`KC_ACL2`|Set mouse acceleration to 2|
You can see an example in the `_ML` here: https://github.com/qmk/qmk_firmware/blob/master/keyboards/clueboard/keymaps/mouse_keys/keymap.c#L46
## Configuring the Behavior of Mousekeys
The default speed for controlling the mouse with the keyboard is intentionally slow. You can adjust these parameters by adding these settings to your keymap's `config.h` file. All times are specified in milliseconds (ms).
```
#define MOUSEKEY_DELAY 300
#define MOUSEKEY_INTERVAL 50
#define MOUSEKEY_MAX_SPEED 10
#define MOUSEKEY_TIME_TO_MAX 20
#define MOUSEKEY_WHEEL_MAX_SPEED 8
#define MOUSEKEY_WHEEL_TIME_TO_MAX 40
```
### `MOUSEKEY_DELAY`
When one of the mouse movement buttons is pressed this setting is used to define the delay between that button press and the mouse cursor moving. Some people find that small movements are impossible if this setting is too low, while settings that are too high feel sluggish.
### `MOUSEKEY_INTERVAL`
When a movement key is held down this specifies how long to wait between each movement report. Lower settings will translate into an effectively higher mouse speed.
### `MOUSEKEY_MAX_SPEED`
As a movement key is held down the speed of the mouse cursor will increase until it reaches `MOUSEKEY_MAX_SPEED`.
### `MOUSEKEY_TIME_TO_MAX`
How long you want to hold down a movement key for until `MOUSEKEY_MAX_SPEED` is reached. This controls how quickly your cursor will accelerate.
### `MOUSEKEY_WHEEL_MAX_SPEED`
The top speed for scrolling movements.
### `MOUSEKEY_WHEEL_TIME_TO_MAX`
How long you want to hold down a scroll key for until `MOUSEKEY_WHEEL_MAX_SPEED` is reached. This controls how quickly your scrolling will accelerate.
Pointing Device is a generic name for a feature intended to be generic: moving the system pointer around. There are certainly other options for it - like mousekeys - but this aims to be easily modifiable and lightweight. You can implement custom keys to control functionality, or you can gather information from other peripherals and insert it directly here - let QMK handle the processing for you.
To enable Pointing Device, uncomment the following line in your rules.mk:
```
POINTING_DEVICE_ENABLE = yes
```
To manipulate the mouse report, you can use the following functions:
*`pointing_device_get_report()` - Returns the current report_mouse_t that represents the information sent to the host computer
*`pointing_device_set_report(report_mouse_t newMouseReport)` - Overrides and saves the report_mouse_t to be sent to the host computer
Keep in mind that a report_mouse_t (here "mouseReport") has the following properties:
*`mouseReport.x` - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing movement (+ to the right, - to the left) on the x axis.
*`mouseReport.y` - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing movement (+ upward, - downward) on the y axis.
*`mouseReport.v` - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing vertical scrolling (+ upward, - downward).
*`mouseReport.h` - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing horizontal scrolling (+ right, - left).
*`mouseReport.buttons` - this is a uint8_t in which the last 5 bits are used. These bits represent the mouse button state - bit 3 is mouse button 5, and bit 7 is mouse button 1.
When the mouse report is sent, the x, y, v, and h values are set to 0 (this is done in "pointing_device_send()", which can be overridden to avoid this behavior). This way, button states persist, but movement will only occur once. For further customization, both `pointing_device_init` and `pointing_device_task` can be overridden.
In the following example, a custom key is used to click the mouse and scroll 127 units vertically and horizontally, then undo all of that when released - because that's a totally useful function. Listen, this is an example:
Its possible to hook up a PS/2 mouse (for example touchpads or trackpoints) to your keyboard as a composite device.
To hook up a Trackpoint, you need to obtain a Trackpoint module (i.e. harvest from a Thinkpad keyboard), identify the function of each pin of the module, and make the necessary circuitry between controller and Trackpoint module. For more information, please refer to [Trackpoint Hardware](https://deskthority.net/wiki/TrackPoint_Hardware) page on Deskthority Wiki.
There are three available modes for hooking up PS/2 devices: USART (best), interrupts (better) or busywait (not recommended).
### Busywait Version
Note: This is not recommended, you may encounter jerky movement or unsent inputs. Please use interrupt or USART version if possible.
In rules.mk:
```
PS2_MOUSE_ENABLE = yes
PS2_USE_BUSYWAIT = yes
```
In your keyboard config.h:
```
#ifdef PS2_USE_BUSYWAIT
# define PS2_CLOCK_PORT PORTD
# define PS2_CLOCK_PIN PIND
# define PS2_CLOCK_DDR DDRD
# define PS2_CLOCK_BIT 1
# define PS2_DATA_PORT PORTD
# define PS2_DATA_PIN PIND
# define PS2_DATA_DDR DDRD
# define PS2_DATA_BIT 2
#endif
```
### Interrupt Version
The following example uses D2 for clock and D5 for data. You can use any INT or PCINT pin for clock, and any pin for data.
In rules.mk:
```
PS2_MOUSE_ENABLE = yes
PS2_USE_INT = yes
```
In your keyboard config.h:
```
#ifdef PS2_USE_INT
#define PS2_CLOCK_PORT PORTD
#define PS2_CLOCK_PIN PIND
#define PS2_CLOCK_DDR DDRD
#define PS2_CLOCK_BIT 2
#define PS2_DATA_PORT PORTD
#define PS2_DATA_PIN PIND
#define PS2_DATA_DDR DDRD
#define PS2_DATA_BIT 5
#define PS2_INT_INIT() do { \
EICRA |= ((1<<ISC21) | \
(0<<ISC20)); \
} while (0)
#define PS2_INT_ON() do { \
EIMSK |= (1<<INT2); \
} while (0)
#define PS2_INT_OFF() do { \
EIMSK &= ~(1<<INT2); \
} while (0)
#define PS2_INT_VECT INT2_vect
#endif
```
### USART Version
To use USART on the ATMega32u4, you have to use PD5 for clock and PD2 for data. If one of those are unavailable, you need to use interrupt version.
If you've installed addressable RGB lights on your keyboard you can control them with QMK. Currently we support the following addressable LEDs on Atmel AVR processors:
* WS2811 and variants (WS2812, WS2812B, WS2812C, etc)
* SK6812RGBW
Some keyboards come with RGB LEDs pre-installed. Others have to have LEDs installed after the fact. See below for information on modifying your keyboard.
## Selecting Colors
QMK uses Hue, Saturation, and Value to set color rather than using RGB. You can use the color wheel below to see how this works. Changing the Hue will cycle around the circle. Saturation will affect the intensity of the color, which you can see as you move from the inner part to the outer part of the wheel. Value sets the overall brightness.
<imgsrc="gitbook/images/color-wheel.svg"alt="HSV Color Wheel"width="250">
If you would like to learn more about HSV you can start with the [Wikipedia article](https://en.wikipedia.org/wiki/HSL_and_HSV).
## Configuration
Before RGB Lighting can be used you have to enable it in `rules.mk`:
RGBLIGHT_ENABLE = yes
You can configure the behavior of the RGB lighting by defining values inside `config.h`.
### Required Configuration
At minimum you have to define the pin your LED strip is connected to and the number of LEDs connected.
```c
#define RGB_DI_PIN D7 // The pin the LED strip is connected to
#define RGBLED_NUM 14 // Number of LEDs in your strip
```
### Optional Configuration
You can change the behavior of the RGB Lighting by setting these configuration values. Use `#define <Option> <Value>` in a `config.h` at the keyboard, revision, or keymap level.
| Option | Default Value | Description |
|--------|---------------|-------------|
| `RGBLIGHT_HUE_STEP` | 10 | How many hues you want to have available. |
| `RGBLIGHT_SAT_STEP` | 17 | How many steps of saturation you'd like. |
| `RGBLIGHT_VAL_STEP` | 17 | The number of levels of brightness you want. |
| `RGBLIGHT_LIMIT_VAL` | 255 | Limit the val of HSV to limit the maximum brightness simply. |
### Animations
If you have `#define RGBLIGHT_ANIMATIONS` in your `config.h` you will have a number of animation modes you can cycle through using the `RGB_MOD` key. You can also `#define` other options to tweak certain animations.
| Option | Default Value | Description |
|--------|---------------|-------------|
| `RGBLIGHT_ANIMATIONS` | | `#define` this to enable animation modes. |
| `RGBLIGHT_EFFECT_BREATHE_CENTER` | 1.85 | Used to calculate the curve for the breathing animation. Valid values 1.0-2.7. |
| `RGBLIGHT_EFFECT_BREATHE_MAX` | 255 | The maximum brightness for the breathing mode. Valid values 1-255. |
| `RGBLIGHT_EFFECT_SNAKE_LENGTH` | 4 | The number of LEDs to light up for the "snake" animation. |
| `RGBLIGHT_EFFECT_KNIGHT_LENGTH` | 3 | The number of LEDs to light up for the "knight" animation. |
| `RGBLIGHT_EFFECT_KNIGHT_OFFSET` | 0 | Start the knight animation this many LEDs from the start of the strip. |
| `RGBLIGHT_EFFECT_KNIGHT_LED_NUM` | RGBLED_NUM | The number of LEDs to have the "knight" animation travel. |
| `RGBLIGHT_EFFECT_CHRISTMAS_INTERVAL` | 1000 | How long to wait between light changes for the "christmas" animation. Specified in ms. |
| `RGBLIGHT_EFFECT_CHRISTMAS_STEP` | 2 | How many LED's to group the red/green colors by for the christmas mode. |
You can also tweak the behavior of the animations by defining these consts in your `keymap.c`. These mostly affect the speed different modes animate at.
```c
// How long (in ms) to wait between animation steps for the breathing mode
note: for backwards compatibility, `RGB_SMOD` is an alias for `RGB_MOD`.
## Hardware Modification

Here is a quick demo on Youtube (with NPKC KC60) (https://www.youtube.com/watch?v=VKrpPAHlisY).
For this mod, you need an unused pin wiring to DI of WS2812 strip. After wiring the VCC, GND, and DI, you can enable the underglow in your Makefile.
RGBLIGHT_ENABLE = yes
In order to use the underglow animation functions, you need to have `#define RGBLIGHT_ANIMATIONS` in your `config.h`.
Please add the following options into your config.h, and set them up according your hardware configuration. These settings are for the `F4` pin by default:
#define RGB_DI_PIN F4 // The pin your RGB strip is wired to
#define RGBLED_NUM 14 // Number of LEDs
You'll need to edit `RGB_DI_PIN` to the pin you have your `DI` on your RGB strip wired to.
Steve Losh [described](http://stevelosh.com/blog/2012/10/a-modern-space-cadet/) the Space Cadet Shift quite well. Essentially, you hit the left Shift on its own, and you get an opening parenthesis; hit the right Shift on its own, and you get the closing one. When hit with other keys, the Shift key keeps working as it always does. Yes, it's as cool as it sounds.
To use it, use `KC_LSPO` (Left Shift, Parenthesis Open) for your left Shift on your keymap, and `KC_RSPC` (Right Shift, Parenthesis Close) for your right Shift.
It's defaulted to work on US keyboards, but if your layout uses different keys for parenthesis, you can define those in your `config.h` like this:
#define LSPO_KEY KC_9
#define RSPC_KEY KC_0
You can also choose between different rollover behaviors of the shift keys by defining:
#define DISABLE_SPACE_CADET_ROLLOVER
in your `config.h`. Disabling rollover allows you to use the opposite shift key to cancel the space cadet state in the event of an erroneous press instead of emitting a pair of parentheses when the keys are released.
The only other thing you're going to want to do is create a `Makefile` in your keymap directory and set the following:
```
COMMAND_ENABLE = no # Commands for debug and configuration
```
This is just to keep the keyboard from going into command mode when you hold both Shift keys at the same time.
Based on the Space Cadet Shift by Steve Losh [described](http://stevelosh.com/blog/2012/10/a-modern-space-cadet/)
Essentially, you hit the Shift on its own, and it acts as the enter key. When hit with other keys, the Shift key keeps working as it always does. Yes, it's as cool as it sounds. This solution works better than using a macro since the timers defined in quantum allow us to tell when another key is pressed, rather than just having a janky timer than results in accidental endlines.
To use it, use `KC_SFTENT` (Shift, Enter) for any Shift on your keymap.
It's defaulted to work on US keyboards, but if you'd like to use a different key for Enter, you can define those in your `config.h` like this:
#define SFTENT_KEY KC_ENT
The only other thing you're going to want to do is create a `rules.mk` in your keymap directory and set the following:
```
COMMAND_ENABLE = no # Commands for debug and configuration
```
This is just to keep the keyboard from going into command mode when you hold both Shift keys at the same time.
PLEASE NOTE: this feature uses the same timers as the Space Cadet Shift feature, so using them in tandem may produce unwanted results.
[Stenography](https://en.wikipedia.org/wiki/Stenotype) is a method of writing most often used by court reports, closed-captioning, and real-time transcription for the deaf. In stenography words are chorded syllable by syllable with a mixture of spelling, phonetic, and shortcut (briefs) strokes. Professional stenographers can reach 200-300 WPM without any of the strain usually found in standard typing and with far fewer errors (>99.9% accuracy).
The [Open Steno Project](http://www.openstenoproject.org/) has built an open-source program called Plover that provides real-time translation of steno strokes into words and commands. It has an established dictionary and supports
## Plover with QWERTY Keyboard
Plover can work with any standard QWERTY keyboard, although it is more efficient if the keyboard supports NKRO (n-key rollover) to allow Plover to see all the pressed keys at once. An example keymap for Plover can be found in `planck/keymaps/default`. Switching to the `PLOVER` layer adjusts the position of the keyboard to support the number bar.
To use Plover with QMK just enable NKRO and optionally adjust your layout if you have anything other than a standard layout. You may also want to purchase some steno-friendly keycaps to make it easier to hit multiple keys.
## Plover with Steno Protocol
Plover also understands the language of several steno machines. QMK can speak a couple of these languages, TX Bolt and GeminiPR. An example layout can be found in `planck/keymaps/steno`.
When QMK speaks to Plover over a steno protocol Plover will not use the keyboard as input. This means that you can switch back and forth between a standard keyboard and your steno keyboard, or even switch layers from Plover to standard and back without needing to activate/deactivate Plover.
In this mode Plover expects to speak with a steno machine over a serial port so QMK will present itself to the operating system as a virtual serial port in addition to a keyboard. By default QMK will speak the TX Bolt protocol but can be switched to GeminiPR; the last protocol used is stored in non-volatile memory so QMK will use the same protocol on restart.
> Note: Due to hardware limitations you may not be able to run both a virtual serial port and mouse emulation at the same time.
### TX Bolt
TX Bolt communicates the status of 24 keys over a very simple protocol in variable-sized (1-5 byte) packets.
### GeminiPR
GeminiPR encodes 42 keys into a 6-byte packet. While TX Bolt contains everything that is necessary for standard stenography, GeminiPR opens up many more options, including supporting non-English theories.
## Configuring QMK for Steno
Firstly, enable steno in your keymap's Makefile. You may also need disable mousekeys, extra keys, or another USB endpoint to prevent conflicts. The builtin USB stack for some processors only supports a certain number of USB endpoints and the virtual serial port needed for steno fills 3 of them.
```Makefile
STENO_ENABLE= yes
MOUSEKEY_ENABLE= no
```
In your keymap create a new layer for Plover. You will need to include `keymap_steno.h`. See `planck/keymaps/steno/keymap.c` for an example. Remember to create a key to switch to the layer as well as a key for exiting the layer. If you would like to switch modes on the fly you can use the keycodes `QK_STENO_BOLT` and `QK_STENO_GEMINI`. If you only want to use one of the protocols you may set it up in your initialization function:
```C
voidmatrix_init_user(){
steno_set_mode(STENO_MODE_GEMINI);// or STENO_MODE_BOLT
}
```
Once you have your keyboard flashed launch Plover. Click the 'Configure...' button. In the 'Machine' tab select the Stenotype Machine that corresponds to your desired protocol. Click the 'Configure...' button on this tab and enter the serial port or click 'Scan'. Baud rate is fine at 9600 (although you should be able to set as high as 115200 with no issues). Use the default settings for everything else (Data Bits: 8, Stop Bits: 1, Parity: N, no flow control).
On the display tab click 'Open stroke display'. With Plover disabled you should be able to hit keys on your keyboard and see them show up in the stroke display window. Use this to make sure you have set up your keymap correctly. You are now ready to steno!
* More resources at the Plover [Learning Stenography](https://github.com/openstenoproject/plover/wiki/Learning-Stenography) wiki
## Keycode Reference
As defined in `keymap_steno.h`.
> Note: TX Bolt does not support the full set of keys. The TX Bolt implementation in QMK will map the GeminiPR keys to the nearest TX Bolt key so that one key map will work for both.
# Tap Dance: A Single Key Can Do 3, 5, or 100 Different Things
<!-- FIXME: Break this up into multiple sections -->
Hit the semicolon key once, send a semicolon. Hit it twice, rapidly -- send a colon. Hit it three times, and your keyboard's LEDs do a wild dance. That's just one example of what Tap Dance can do. It's one of the nicest community-contributed features in the firmware, conceived and created by [algernon](https://github.com/algernon) in [#451](https://github.com/qmk/qmk_firmware/pull/451). Here's how algernon describes the feature:
With this feature one can specify keys that behave differently, based on the amount of times they have been tapped, and when interrupted, they get handled before the interrupter.
To make it clear how this is different from `ACTION_FUNCTION_TAP`, lets explore a certain setup! We want one key to send `Space` on single tap, but `Enter` on double-tap.
With `ACTION_FUNCTION_TAP`, it is quite a rain-dance to set this up, and has the problem that when the sequence is interrupted, the interrupting key will be send first. Thus, `SPC a` will result in `a SPC` being sent, if they are typed within `TAPPING_TERM`. With the tap dance feature, that'll come out as `SPC a`, correctly.
The implementation hooks into two parts of the system, to achieve this: into `process_record_quantum()`, and the matrix scan. We need the latter to be able to time out a tap sequence even when a key is not being pressed, so `SPC` alone will time out and register after `TAPPING_TERM` time.
But lets start with how to use it, first!
First, you will need `TAP_DANCE_ENABLE=yes` in your `rules.mk`, because the feature is disabled by default. This adds a little less than 1k to the firmware size. Next, you will want to define some tap-dance keys, which is easiest to do with the `TD()` macro, that - similar to `F()`, takes a number, which will later be used as an index into the `tap_dance_actions` array.
This array specifies what actions shall be taken when a tap-dance key is in action. Currently, there are three possible options:
*`ACTION_TAP_DANCE_DOUBLE(kc1, kc2)`: Sends the `kc1` keycode when tapped once, `kc2` otherwise. When the key is held, the appropriate keycode is registered: `kc1` when pressed and held, `kc2` when tapped once, then pressed and held.
*`ACTION_TAP_DANCE_FN(fn)`: Calls the specified function - defined in the user keymap - with the final tap count of the tap dance action.
*`ACTION_TAP_DANCE_FN_ADVANCED(on_each_tap_fn, on_dance_finished_fn, on_dance_reset_fn)`: Calls the first specified function - defined in the user keymap - on every tap, the second function on when the dance action finishes (like the previous option), and the last function when the tap dance action resets.
The first option is enough for a lot of cases, that just want dual roles. For example, `ACTION_TAP_DANCE(KC_SPC, KC_ENT)` will result in `Space` being sent on single-tap, `Enter` otherwise.
And that's the bulk of it!
And now, on to the explanation of how it works!
The main entry point is `process_tap_dance()`, called from `process_record_quantum()`, which is run for every keypress, and our handler gets to run early. This function checks whether the key pressed is a tap-dance key. If it is not, and a tap-dance was in action, we handle that first, and enqueue the newly pressed key. If it is a tap-dance key, then we check if it is the same as the already active one (if there's one active, that is). If it is not, we fire off the old one first, then register the new one. If it was the same, we increment the counter and the timer.
This means that you have `TAPPING_TERM` time to tap the key again, you do not have to input all the taps within that timeframe. This allows for longer tap counts, with minimal impact on responsiveness.
Our next stop is `matrix_scan_tap_dance()`. This handles the timeout of tap-dance keys.
For the sake of flexibility, tap-dance actions can be either a pair of keycodes, or a user function. The latter allows one to handle higher tap counts, or do extra things, like blink the LEDs, fiddle with the backlighting, and so on. This is accomplished by using an union, and some clever macros.
# Examples
## Simple Example
Here's a simple example for a single definition:
1. In your `rules.mk`, add `TAP_DANCE_ENABLE = yes`
2. In your `config.h` (which you can copy from `qmk_firmware/keyboards/planck/config.h` to your keymap directory), add `#define TAPPING_TERM 200`
3. In your `keymap.c` file, define the variables and definitions, then add to your keymap:
> This feature is currently *huge* at 4400 bytes, and should probably only be put on boards with a lot of memory, or for fun.
The terminal feature is a command-line-like interface designed to communicate through a text editor with keystrokes. It's beneficial to turn off auto-indent features in your editor.
To enable, stick this in your `rules.mk` or `Makefile`:
TERMINAL_ENABLE = yes
And use the `TERM_ON` and `TERM_OFF` keycodes to turn it on or off.
When enabled, a `> ` prompt will appear, where you'll be able to type, backspace (a bell will ding if you reach the beginning and audio is enabled), and hit enter to send the command. Arrow keys are currently disabled so it doesn't get confused. Moving your cursor around with the mouse is discouraged.
`#define TERMINAL_HELP` enables some other output helpers that aren't really needed with this page.
## Future Ideas
* Keyboard/user-extensible commands
* Smaller footprint
* Arrow key support
* Command history
* SD card support
* LCD support for buffer display
* Keycode -> name string LUT
* Layer status
* *Analog/digital port read/write*
* RGB mode stuff
* Macro definitions
* EEPROM read/write
* Audio control
## Current Commands
### `about`
Prints out the current version of QMK with a build date:
```
> about
QMK Firmware
v0.5.115-7-g80ed73-dirty
Built: 2017-08-29-20:24:44
```
### `help`
Prints out the available commands:
```
> help
commands available:
about help keycode keymap exit
```
### `keycode <layer> <row> <col>`
Prints out the keycode value of a certain layer, row, and column:
There are three Unicode keymap definition method available in QMK:
## UNICODE_ENABLE
Supports Unicode input up to 0xFFFF. The keycode function is `UC(n)` in
keymap file, where *n* is a 4 digit hexadecimal.
## UNICODEMAP_ENABLE
Supports Unicode up to 0xFFFFFFFF. You need to maintain a separate mapping
table `const uint32_t PROGMEM unicode_map[] = {...}` in your keymap file.
The keycode function is `X(n)` where *n* is the array index of the mapping
table.
## UCIS_ENABLE
TBD
Unicode input in QMK works by inputing a sequence of characters to the OS,
sort of like macro. Unfortunately, each OS has different ideas on how Unicode is inputted.
This is the current list of Unicode input method in QMK:
* UC_OSX: MacOS Unicode Hex Input support. Works only up to 0xFFFF. Disabled by default. To enable: go to System Preferences -> Keyboard -> Input Sources, and enable Unicode Hex.
* UC_OSX_RALT: Same as UC_OSX, but sends the Right Alt key for unicode input
* UC_LNX: Unicode input method under Linux. Works up to 0xFFFFF. Should work almost anywhere on ibus enabled distros. Without ibus, this works under GTK apps, but rarely anywhere else.
* UC_WIN: (not recommended) Windows built-in Unicode input. To enable: create registry key under `HKEY_CURRENT_USER\Control Panel\Input Method\EnableHexNumpad` of type `REG_SZ` called `EnableHexNumpad`, set its value to 1, and reboot. This method is not recommended because of reliability and compatibility issue, use WinCompose method below instead.
* UC_WINC: Windows Unicode input using WinCompose. Requires [WinCompose](https://github.com/samhocevar/wincompose). Works reliably under many (all?) variations of Windows.
# Additional Language Support
In `quantum/keymap_extras/`, you'll see various language files - these work the same way as the alternative layout ones do. Most are defined by their two letter country/language code followed by an underscore and a 4-letter abbreviation of its name. `FR_UGRV` which will result in a `ù` when using a software-implemented AZERTY layout. It's currently difficult to send such characters in just the firmware.
# International Characters on Windows
[AutoHotkey](https://autohotkey.com) allows Windows users to create custom hotkeys among others.
The method does not require Unicode support in the keyboard itself but depends instead of AutoHotkey running in the background.
First you need to select a modifier combination that is not in use by any of your programs.
CtrlAltWin is not used very widely and should therefore be perfect for this.
There is a macro defined for a mod-tab combo `LCAG_T`.
Add this mod-tab combo to a key on your keyboard, e.g.: `LCAG_T(KC_TAB)`.
This makes the key behave like a tab key if pressed and released immediately but changes it to the modifier if used with another key.
In the default script of AutoHotkey you can define custom hotkeys.
<^<!<#a::Send, ä
<^<!<#<+a::Send, Ä
The hotkeys above are for the combination CtrlAltGui and CtrlAltGuiShift plus the letter a.
AutoHotkey inserts the Text right of `Send, ` when this combination is pressed.
If you use more than one keyboard with a similar keymap, you might see the benefit in being able to share code between them. Create your own folder in `users/` named the same as your keymap (ideally your github username, `<name>`) with the following structure:
*`/users/<name>/` (added to the path automatically)
*`readme.md`
*`rules.mk` (included automatically)
*`<name>.h` (optional)
*`<name>.c` (optional)
`<name>.c` will need to be added to the SRC in `rules.mk` like this:
SRC += <name>.c
Additional files may be added in the same way - it's recommended you have one named `<name>`.c/.h though.
All this only happens when you build a keymap named `<name>`, like this:
make planck:<name>
For example,
make planck:jack
Will include the `/users/jack/` folder in the path, along with `/users/jack/rules.mk`.
## Readme
Please include authorship (your name, github username, email), and optionally [a license that's GPL compatible](https://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses).
## Example
For a brief example, checkout `/users/_example/` , or for a more detailed examples check out [`template.h`](https://github.com/qmk/qmk_firmware/blob/master/users/drashna/template.h) and [`template.c`](https://github.com/qmk/qmk_firmware/blob/master/users/drashna/template.c) in `/users/drashna/` .
### Consolidated Macros
If you wanted to consolidate macros and other functions into your userspace for all of your keymaps, you can do that. The issue is that you then cannot call any function defined in your userspace, or it gets complicated. To better handle this, you can call the functions here and create new functions to use in individual keymaps.
First, you'd want to go through all of your `keymap.c` files and replace `process_record_user` with `process_record_keymap` instead. This way, you can still use keyboard specific codes on those boards, and use your custom "global" keycodes as well. You'll also want to replace `SAFE_RANGE` with `NEW_SAFE_RANGE` so that you wont have any overlapping keycodes
Then add `#include <name.h>` to all of your keymap.c files. This allows you to use these new keycodes without having to redefine them in each keymap.
Once you've done that, you'll want to set the keycode definitions that you need to the `<name>.h` file. For instance:
```
#ifndef USERSPACE
#define USERSPACE
#include "quantum.h"
// Define all of
enum custom_keycodes {
KC_MAKE = SAFE_RANGE,
NEW_SAFE_RANGE //use "NEW_SAFE_RANGE" for keymap specific codes
};
#endif
```
Now you want to create the `<name>.c` file, and add this content to it:
This will add a new `KC_MAKE` keycode that can be used in any of your keymaps. And this keycode will output `make <keyboard>:<keymap">`, making frequent compiling easier. And this will work with any keyboard and any keymap as it will output the current boards info, so that you don't have to type this out every time.
Additionally, this should flash the newly compiled firmware automatically, using the correct utility, based on the bootloader settings (or default to just generating the HEX file). However, it should be noted that this may not work on all systems. AVRDUDE doesn't work on WSL, namely (and will dump the HEX in the ".build" folder instead).
QMK has a staggering number of features for building your keyboard. It can take some time to understand all of them and determine which one will achieve your goal.
* [Advanced Keycodes](feature_advanced_keycodes.md) - Change layers, type shifted keys, and more. Go beyond typing simple characters.
* [Audio](feature_audio.md) - Connect a speaker to your keyboard for audio feedback, midi support, and music mode.
* [Auto Shift](feature_auto_shift.md) - Tap for the normal key, hold slightly longer for its shifted state.
* [Backlight](feature_backlight.md) - LED lighting support for your keyboard.
* [Bootmagic](feature_bootmagic.md) - Adjust the behavior of your keyboard using hotkeys.
* [Dynamic Macros](feature_dynamic_macros.md) - Record and playback macros from the keyboard itself.
* [Key Lock](feature_key_lock.md) - Lock a key in the "down" state.
* [Layouts](feature_layouts.md) - Use one keymap with any keyboard that supports your layout.
* [Leader Key](feature_leader_key.md) - Tap the leader key followed by a sequence to trigger custom behavior.
* [Macros](feature_macros.md) - Send multiple key presses when pressing only one physical key.
* [Mouse keys](feature_mouse_keys.md) - Control your mouse pointer from your keyboard.
* [Pointing Device](feature_pointing_device.md) - Framework for connecting your custom pointing device to your keyboard.
* [PS2 Mouse](feature_ps2_mouse.md) - Driver for connecting a PS/2 mouse directly to your keyboard.
* [RGB Light](feature_rgblight.md) - RGB lighting for your keyboard.
* [Space Cadet](feature_space_cadet.md) - Use your left/right shift keys to type parenthesis and brackets.
* [Stenography](feature_stenography.md) - Put your keyboard into Plover mode for stenography use.
* [Tap Dance](feature_tap_dance.md) - Make a single key do as many things as you want.
* [Terminal](feature_terminal.md) - CLI interface to the internals of your keyboard.
* [Thermal Printer](feature_thermal_printer.md) - Connect a thermal printer to your keyboard to be able to toggle on a printed log of everything you type.
# Flashing Instructions and Bootloader Information
There are quite a few different types of bootloaders that keyboards use, and just about all of the use a different flashing method. Luckily, projects like the [QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) aim to be compatible with all the different types without having to think about it much, but this article will describe the different types of bootloaders, and available methods for flashing them.
If you have a bootloader selected with the `BOOTLOADER` variable in your `rules.mk`, QMK will automatically calculate if your .hex file is the right size to be flashed to the device, and output the total size it bytes (along with the max). To run this process manually, compile with the target `check-size`, eg `make planck/rev4:default:check-size`.
## DFU
Atmel's DFU bootloader comes on all atmega32u4 chips by default, and is used by many keyboards that have their own ICs on their PCBs (Older OLKB boards, Clueboards). Some keyboards may also use LUFA's DFU bootloader (or QMK's fork) (Newer OLKB boards) that adds in additional features specific to that hardware.
To ensure compatibility with the DFU bootloader, make sure this block is present your `rules.mk` (optionally with `lufa-dfu` or `qmk-dfu` instead):
# Bootloader
# This definition is optional, and if your keyboard supports multiple bootloaders of
# different sizes, comment this out, and the correct address will be loaded
# automatically (+60). See bootloader.mk for all options.
1. Press the `RESET` keycode, or tap the RESET button (or short RST to GND).
2. Wait for the OS to detect the device
3. Erase the memory (may be done automatically)
4. Flash a .hex file
5. Reset the device into application mode (may be done automatically)
or:
make <keyboard>:<keymap>:dfu
### QMK DFU
QMK has a fork of the LUFA DFU bootloader that allows for a simple matrix scan for exiting the bootloader and returning to the application, as well as flashing an LED/making a ticking noise with a speaker when things are happening. To enable these features, use this block in your `config.h` (The key that exits the bootloader needs to be hooked-up to the INPUT and OUTPUT defined here):
#define QMK_ESC_OUTPUT F1 // usually COL
#define QMK_ESC_INPUT D5 // usually ROW
#define QMK_LED E6
#define QMK_SPEAKER C6
The Manufacturer and Product names are automatically pulled from your `config.h`, and "Bootloader" is added to the product.
To generate this bootloader, use the `bootloader` target, eg `make planck/rev4:default:bootloader`.
To generate a production-ready .hex file (containing the application and the bootloader), use the `production` target, eg `make planck/rev4:default:production`.
## Caterina
Arduino boards and their clones use the [Caterina bootloader](https://github.com/arduino/Arduino/tree/master/hardware/arduino/avr/bootloaders/caterina) (any keyboard built with a Pro Micro, or clone), and uses the avr109 protocol to communicate through virtual serial. Bootloaders like [A-Star](https://www.pololu.com/docs/0J61/9) are based on Caterina.
To ensure compatibility with the Caterina bootloader, make sure this block is present your `rules.mk`:
# Bootloader
# This definition is optional, and if your keyboard supports multiple bootloaders of
# different sizes, comment this out, and the correct address will be loaded
# automatically (+60). See bootloader.mk for all options.
This page describes setting up the build environment for QMK. These instructions cover AVR processors (such as the atmega32u4).
<!-- FIXME: We should have ARM instructions somewhere. -->
## Linux
To ensure you are always up to date, you can just run `sudo util/install_dependencies.sh`. That should always install all the dependencies needed. **This will run `apt-get upgrade`.**
You can also install things manually, but this documentation might not be always up to date with all requirements.
The current requirements are the following, but not all might be needed depending on what you do. Also note that some systems might not have all the dependencies available as packages, or they might be named differently.
```
build-essential
gcc
unzip
wget
zip
gcc-avr
binutils-avr
avr-libc
dfu-programmer
dfu-util
gcc-arm-none-eabi
binutils-arm-none-eabi
libnewlib-arm-none-eabi
git
```
Install the dependencies with your favorite package manager.
If you're on [NixOS](https://nixos.org/), or have Nix installed on Linux or macOS, run `nix-shell` from the repository root to get a build environment.
By default, this will download compilers for both AVR and ARM. If you don't need both, disable the `avr` or `arm` arguments, e.g.:
nix-shell --arg arm false
## macOS
If you're using [homebrew,](http://brew.sh/) you can use the following commands:
brew tap osx-cross/avr
brew tap PX4/homebrew-px4
brew update
brew install avr-gcc
brew install dfu-programmer
brew install gcc-arm-none-eabi
brew install avrdude
This is the recommended method. If you don't have homebrew, [install it!](http://brew.sh/) It's very much worth it for anyone who works in the command line. Note that the `make` and `make install` portion during the homebrew installation of avr-libc can take over 20 minutes and exhibit high CPU usage.
## Windows with msys2 (recommended)
The best environment to use, for Windows Vista through any later version (tested on 7 and 10), is [msys2](http://www.msys2.org).
* Install msys2 by downloading it and following the instructions here: http://www.msys2.org
* Open the ``MSYS2 MingGW 64-bit`` shortcut
* Navigate to your qmk checkout. For example, if it's in the root of your c drive:
*`$ cd /c/qmk_firmware`
* Run `util/msys2_install.sh` and follow the prompts
## Windows 10 (deprecated)
These are the old instructions for Windows 10. We recommend you use [MSYS2 as outlined above](#windows-with-msys2-recommended).
### Creators Update
If you have Windows 10 with Creators Update or later, you can build and flash the firmware directly. Before the Creators Update, only building was possible. If you don't have it yet or if are unsure, follow [these instructions](https://support.microsoft.com/en-us/instantanswers/d4efb316-79f0-1aa1-9ef3-dcada78f3fa0/get-the-windows-10-creators-update).
### Windows Subsystem for Linux
In addition to the Creators Update, you need Windows 10 Subystem for Linux, so install it following [these instructions](http://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/). If you already have the Windows 10 Subsystem for Linux from the Anniversary update it's recommended that you [upgrade](https://betanews.com/2017/04/14/upgrade-windows-subsystem-for-linux/) it to 16.04LTS, because some keyboards don't compile with the toolchains included in 14.04LTS. Note that you need to know what your are doing if you chose the `sudo do-release-upgrade` method.
### Git
If you already have cloned the repository on your Windows file system you can ignore this section.
You will need to clone the repository to your Windows file system using the normal Git for Windows and **not** the WSL Git. So if you haven't installed Git before, [download](https://git-scm.com/download/win) and install it. Then [set it up](https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup), it's important that you setup the e-mail and user name, especially if you are planning to contribute.
Once Git is installed, open the Git Bash command and change the directory to where you want to clone QMK; note that you have to use forward slashes, and that your c drive is accessed like this `/c/path/to/where/you/want/to/go`. Then run `git clone --recurse-submodules https://github.com/qmk/qmk_firmware`, this will create a new folder `qmk_firmware` as a subfolder of the current one.
### Toolchain Setup
The Toolchain setup is done through the Windows Subsystem for Linux, and the process is fully automated. If you want to do everything manually, there are no other instructions than the scripts themselves, but you can always open issues and ask for more information.
1. Open "Bash On Ubuntu On Windows" from the start menu.
2. Go to the directory where you cloned `qmk_firmware`. Note that the paths start with `/mnt/` in the WSL, so you have to write for example `cd /mnt/c/path/to/qmk_firmware`.
3. Run `util/wsl_install.sh` and follow the on-screen instructions.
4. Close the Bash command window, and re-open it.
5. You are ready to compile and flash the firmware!
### Some Important Things to Keep in Mind
* You can run `util/wsl_install.sh` again to get all the newest updates.
* Your QMK repository need to be on a Windows file system path, since WSL can't run executables outside it.
* The WSL Git is **not** compatible with the Windows Git, so use the Windows Git Bash or a windows Git GUI for all Git operations
* You can edit files either inside WSL or normally using Windows, but note that if you edit makefiles or shell scripts, make sure you are using an editor that saves the files with Unix line endings. Otherwise the compilation might not work.
## Windows (Vista and Later) (Deprecated)
These are the old instructions for Windows Vista and later. We recommend you use [MSYS2 as outlined above](#windows-with-msys2-recommended).
1. If you have ever installed WinAVR, uninstall it.
2. Install [MHV AVR Tools](https://infernoembedded.com/sites/default/files/project/MHV_AVR_Tools_20131101.exe). Disable smatch, but **be sure to leave the option to add the tools to the PATH checked**.
3. If you are going to flash Infinity based keyboards you will need to install dfu-util, refer to the instructions by [Input Club](https://github.com/kiibohd/controller/wiki/Loading-DFU-Firmware).
4. Install [MinGW](https://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download). During installation, uncheck the option to install a graphical user interface. **DO NOT change the default installation folder.** The scripts depend on the default location.
5. Clone this repository. [This link will download it as a zip file, which you'll need to extract.](https://github.com/qmk/qmk_firmware/archive/master.zip) Open the extracted folder in Windows Explorer.
6. Open the `\util` folder.
7. Double-click on the `1-setup-path-win` batch script to run it. You'll need to accept a User Account Control prompt. Press the spacebar to dismiss the success message in the command prompt that pops up.
8. Right-click on the `2-setup-environment-win` batch script, select "Run as administrator", and accept the User Account Control prompt. This part may take a couple of minutes, and you'll need to approve a driver installation, but once it finishes, your environment is complete!
If you have trouble and want to ask for help, it is useful to generate a *Win_Check_Output.txt* file by running `Win_Check.bat` in the `\util` folder.
## Docker
If this is a bit complex for you, Docker might be the turn-key solution you need. After installing [Docker](https://www.docker.com/products/docker), run the following command at the root of the QMK folder to build a keyboard/keymap:
```bash
# You'll run this every time you want to build a keymap
# modify the keymap and keyboard assignment to compile what you want
# defaults are ergodox/default
docker run -e keymap=gwen -e keyboard=ergodox_ez --rm -v $('pwd'):/qmk:rw edasque/qmk_firmware
```
On Windows Docker seems to have issues with the VOLUME tag in Dockerfile, and `$('pwd')` won't print a Windows compliant path; use full path instead, like this:
```bash
docker run -e keymap=default -e keyboard=ergobox_ez --rm -v D:/Users/Sacapuces/Documents/Repositories/qmk:/qmk:rw edasque/qmk_firmware
```
This will compile the targeted keyboard/keymap and leave it in your QMK directory for you to flash.
## Vagrant
If you have any problems building the firmware, you can try using a tool called Vagrant. It will set up a virtual computer with a known configuration that's ready-to-go for firmware building. OLKB does NOT host the files for this virtual computer. Details on how to set up Vagrant are in the [vagrant guide](getting_started_vagrant.md).
Github can be a little tricky to those that aren't familiar with it - this guide will walk through each step of forking, cloning, and submitting a pull request with QMK.
{% hint style='info' %}
This guide assumes you're somewhat comfortable with running things at the command line, and have git installed on your system.
{% endhint %}
Start on the [QMK Github page](https://github.com/qmk/qmk_firmware), and you'll see a button in the upper right that says "Fork":

If you're apart of an organization, you'll need to choose which account to fork it to. In most circumstances, you'll want to fork it to your personal account. Once your fork is completed (sometimes this takes a little while), click the "Clone or Download" button:

And be sure to select "HTTPS", and select the link and copy it:

From here, enter `git clone ` into the command line, and then paste your link:
You now have your QMK fork on your local machine, and you can add your keymap, compile it and flash it to your board. Once you're happy with your changes, you can add, commit, and push them to your fork like this:
remote: Resolving deltas: 100% (1/1), completed with 1 local objects.
To https://github.com/whoeveryouare/qmk_firmware.git
+ 20043e64...7da94ac5 master -> master
```
Your changes now exist on your fork on Github - if you go back there (`https://github.com/<whoeveryouare>/qmk_firmware`), you can create a "New Pull Request" by clicking this button:
This page attempts to explain the basic information you need to know to work with the QMK project. It assumes that you are familiar with navigating a Unix shell, but does not assume you are familiar with C or with compiling using make.
## Basic QMK Structure
QMK is a fork of [Jun Wako](https://github.com/tmk)'s [tmk_keyboard](https://github.com/tmk/tmk_keyboard) project. The original TMK code, with modifications, can be found in the `tmk` folder. The QMK additions to the project may be found in the `quantum` folder. Keyboard projects may be found in the `handwired` and `keyboard` folders.
### Keyboard Project Structure
Within the folder `keyboards` and its subfolder `handwired` is a directory for each keyboard project, for example `qmk_firmware/keyboards/clueboard`. Within it you'll find the following structure:
*`keymaps/`: Different keymaps that can be built
*`rules.mk`: The file that sets the default "make" options. Do not edit this file directly, instead use a keymap specific `Makefile`
*`config.h`: The file that sets the default compile time options. Do not edit this file directly, instead use a keymap specific `config.h`.
### Keymap Structure
In every keymap folder, the following files may be found. Only `keymap.c` is required, and if the rest of the files are not found the default options will be chosen.
*`config.h`: the options to configure your keymap
*`keymap.c`: all of your keymap code, required
*`rules.mk`: the features of QMK that are enabled
*`readme.md`: a description of your keymap, how others might use it, and explanations of features. Please upload images to a service like imgur.
If the keymap `config.h` exists, that file is included by the build system and the keyboard `config.h` is not included. If you wish to override settings in your keymap's `config.h` you will need to include some glue code:
```
#ifndef CONFIG_USER_H
#define CONFIG_USER_H
#include "config_common.h"
```
If you want to override a setting from the parent `config.h` file, you need to `#undef` and then `#define` the setting again, like this:
The full syntax of the `make` command is `<keyboard_folder>:<keymap>:<target>`, where:
*`<keyboard_folder>` is the path of the keyboard, for example `planck`
* Use `all` to compile all keyboards
* Specify the path to compile a revision, for example `planck/rev4` or `planck/rev3`
* If the keyboard doesn't have any folders, it can be left out
* To compile the default folder, you can leave it out
*`<keymap>` is the name of the keymap, for example `algernon`
* Use `all` to compile all keymaps
*`<target>` will be explained in more detail below.
The `<target>` means the following
* If no target is given, then it's the same as `all` below
*`all` compiles as many keyboard/revision/keymap combinations as specified. For example, `make planck/rev4:default` will generate a single .hex, while `make planck/rev4:all` will generate a hex for every keymap available to the planck.
*`dfu`, `teensy` or `dfu-util`, compile and upload the firmware to the keyboard. If the compilation fails, then nothing will be uploaded. The programmer to use depends on the keyboard. For most keyboards it's `dfu`, but for ChibiOS keyboards you should use `dfu-util`, and `teensy` for standard Teensys. To find out which command you should use for your keyboard, check the keyboard specific readme.
* **Note**: some operating systems need root access for these commands to work, so in that case you need to run for example `sudo make planck/rev4:default:dfu`.
*`clean`, cleans the build output folders to make sure that everything is built from scratch. Run this before normal compilation if you have some unexplainable problems.
You can also add extra options at the end of the make command line, after the target
*`make COLOR=false` - turns off color output
*`make SILENT=true` - turns off output besides errors/warnings
*`make VERBOSE=true` - outputs all of the gcc stuff (not interesting, unless you need to debug)
*`make EXTRAFLAGS=-E` - Preprocess the code without doing any compiling (useful if you are trying to debug #define commands)
The make command itself also has some additional options, type `make --help` for more information. The most useful is probably `-jx`, which specifies that you want to compile using more than one CPU, the `x` represents the number of CPUs that you want to use. Setting that can greatly reduce the compile times, especially if you are compiling many keyboards/keymaps. I usually set it to one less than the number of CPUs that I have, so that I have some left for doing other things while it's compiling. Note that not all operating systems and make versions supports that option.
Here are some examples commands
*`make all:all` builds everything (all keyboard folders, all keymaps). Running just `make` from the `root` will also run this.
*`make ergodox_infinity:algernon:clean` will clean the build output of the Ergodox Infinity keyboard.
*`make planck/rev4:default:dfu COLOR=false` builds and uploads the keymap without color output.
## `rules.mk` Options
Set these variables to `no` to disable them, and `yes` to enable them.
`BOOTMAGIC_ENABLE`
This allows you to hold a key and the salt key (space by default) and have access to a various EEPROM settings that persist over power loss. It's advised you keep this disabled, as the settings are often changed by accident, and produce confusing results that makes it difficult to debug. It's one of the more common problems encountered in help sessions.
Consumes about 1000 bytes.
`MOUSEKEY_ENABLE`
This gives you control over cursor movements and clicks via keycodes/custom functions.
`EXTRAKEY_ENABLE`
This allows you to use the system and audio control key codes.
`CONSOLE_ENABLE`
This allows you to print messages that can be read using [`hid_listen`](https://www.pjrc.com/teensy/hid_listen.html).
By default, all debug (*dprint*) print (*print*, *xprintf*), and user print (*uprint*) messages will be enabled. This will eat up a significant portion of the flash and may make the keyboard .hex file too big to program.
To disable debug messages (*dprint*) and reduce the .hex file size, include `#define NO_DEBUG` in your `config.h` file.
To disable print messages (*print*, *xprintf*) and user print messages (*uprint*) and reduce the .hex file size, include `#define NO_PRINT` in your `config.h` file.
To disable print messages (*print*, *xprintf*) and **KEEP** user print messages (*uprint*), include `#define USER_PRINT` in your `config.h` file.
To see the text, open `hid_listen` and enjoy looking at your printed messages.
**NOTE:** Do not include *uprint* messages in anything other than your keymap code. It must not be used within the QMK system framework. Otherwise, you will bloat other people's .hex files.
Consumes about 400 bytes.
`COMMAND_ENABLE`
This enables magic commands, typically fired with the default magic key combo `LSHIFT+RSHIFT+KEY`. Magic commands include turning on debugging messages (`MAGIC+D`) or temporarily toggling NKRO (`MAGIC+N`).
`SLEEP_LED_ENABLE`
Enables your LED to breath while your computer is sleeping. Timer1 is being used here. This feature is largely unused and untested, and needs updating/abstracting.
`NKRO_ENABLE`
This allows the keyboard to tell the host OS that up to 248 keys are held down at once (default without NKRO is 6). NKRO is off by default, even if `NKRO_ENABLE` is set. NKRO can be forced by adding `#define FORCE_NKRO` to your config.h or by binding `MAGIC_TOGGLE_NKRO` to a key and then hitting the key.
`BACKLIGHT_ENABLE`
This enables your backlight on Timer1 and ports B5, B6, or B7 (for now). You can specify your port by putting this in your `config.h`:
#define BACKLIGHT_PIN B7
`MIDI_ENABLE`
This enables MIDI sending and receiving with your keyboard. To enter MIDI send mode, you can use the keycode `MI_ON`, and `MI_OFF` to turn it off. This is a largely untested feature, but more information can be found in the `quantum/quantum.c` file.
`UNICODE_ENABLE`
This allows you to send unicode symbols via `UC(<unicode>)` in your keymap. Only codes up to 0x7FFF are currently supported.
`UNICODEMAP_ENABLE`
This allows sending unicode symbols using `X(<unicode>)` in your keymap. Codes
up to 0xFFFFFFFF are supported, including emojis. You will need to maintain
a separate mapping table in your keymap file.
Known limitations:
- Under Mac OS, only codes up to 0xFFFF are supported.
- Under Linux ibus, only codes up to 0xFFFFF are supported (but anything important is still under this limit for now).
Characters out of range supported by the OS will be ignored.
`BLUETOOTH_ENABLE`
This allows you to interface with a Bluefruit EZ-key to send keycodes wirelessly. It uses the D2 and D3 pins.
`AUDIO_ENABLE`
This allows you output audio on the C6 pin (needs abstracting). See the [audio page](feature_audio.md) for more information.
`FAUXCLICKY_ENABLE`
Uses buzzer to emulate clicky switches. A cheap imitation of the Cherry blue switches. By default, uses the C6 pin, same as AUDIO_ENABLE.
`VARIABLE_TRACE`
Use this to debug changes to variable values, see the [tracing variables](unit_testing.md#tracing-variables) section of the Unit Testing page for more information.
`API_SYSEX_ENABLE`
This enables using the Quantum SYSEX API to send strings (somewhere?)
This consumes about 5390 bytes.
`KEY_LOCK_ENABLE`
This enables [key lock](feature_key_lock.md). This consumes an additional 260 bytes.
## Customizing Makefile Options on a Per-Keymap Basis
If your keymap directory has a file called `rules.mk` any options you set in that file will take precedence over other `rules.mk` options for your particular keyboard.
So let's say your keyboard's `rules.mk` has `BACKLIGHT_ENABLE = yes`. You want your particular keyboard to not have the backlight, so you make a file called `rules.mk` and specify `BACKLIGHT_ENABLE = no`.
This project includes a Vagrantfile that will allow you to build a new firmware for your keyboard very easily without major changes to your primary operating system. This also ensures that when you clone the project and perform a build, you have the exact same environment as anyone else using the Vagrantfile to build. This makes it much easier for people to help you troubleshoot any issues you encounter.
## Requirements
Using the `/Vagrantfile` in this repository requires you have [Vagrant](http://www.vagrantup.com/) as well as [VirtualBox](https://www.virtualbox.org/) (or [VMware Workstation](https://www.vmware.com/products/workstation) and [Vagrant VMware plugin](http://www.vagrantup.com/vmware) but the (paid) VMware plugin requires a licensed copy of VMware Workstation/Fusion).
*COMPATIBILITY NOTICE* Certain versions of Virtualbox 5 appear to have an incompatibility with the Virtualbox extensions installed in the boxes in this Vagrantfile. If you encounter any issues with the /vagrant mount not succeeding, please upgrade your version of Virtualbox to at least 5.0.12. **Alternately, you can try running the following command:**`vagrant plugin install vagrant-vbguest`
Other than having Vagrant and Virtualbox installed and possibly a restart of your computer afterwards, you can simple run a 'vagrant up' anywhere inside the folder where you checked out this project and it will start a Linux virtual machine that contains all the tools required to build this project. There is a post Vagrant startup hint that will get you off on the right foot, otherwise you can also reference the build documentation below.
# Flashing the Firmware
The "easy" way to flash the firmware is using a tool from your host OS:
If you want to program via the command line you can uncomment the ['modifyvm'] lines in the Vagrantfile to enable the USB passthrough into Linux and then program using the command line tools like dfu-util/dfu-programmer or you can install the Teensy CLI version.
Software provided by Atmel for flashing AVR devices. We generally recommend [QMK Flasher](https://github.com/qmk/qmk_flasher) instead, but for some advanced use cases FLIP is required.
## git
Versioning software used at the command line
## GitHub
The website that hosts most of the QMK project. It provides integration with git, issue tracking, and other features that help us run QMK.
## ISP
In-system programming, a method of programming an AVR chip using external hardware and the JTAG pins.
## hid_listen
An interface for receiving debugging messages from your keyboard. You can view these messages using [QMK Flasher](https://github.com/qmk/qmk_flasher) or [PJRC's hid_listen](https://www.pjrc.com/teensy/hid_listen.html)
## Keycode
A 2-byte number that represents a particular key. `0x00`-`0xFF` are used for [Basic Keycodes](keycodes_basic.md) while `0x100`-`0xFFFF` are used for [Quantum Keycodes](quantum_keycodes.md).
## Key Down
An event that happens when a key is pressed down, but is completed before a key is released.
## Key Up
An event that happens when a key is released.
## Keymap
An array of keycodes mapped to a physical keyboard layout, which are processed on key presses and releases
## Layer
An abstraction used to allow a key to serve multiple purposes. The highest active layer takes precedence.
## Leader Key
A feature that allows you to tap the leader key followed by a sequence of 1, 2, or 3 keys to activate key presses or other quantum features.
Light Emitting Diode, the most common device used for indicators on a keyboard.
## Make
Software package that is used to compile all the source files. You run `make` with various options to compile your keyboard firmware.
## Matrix
A wiring pattern of columns and rows that enables the MCU to detect keypresses with a fewer number of pins. The matrix often incorporates diodes to allow for NKRO.
## Macro
A feature that lets you send multiple keypress events (hid reports) after having pressed only a single key.
* [Macro Documentation](feature_macros.md)
## MCU
Microcontrol Unit, the processor that powers your keyboard.
## Modifier
A key that is held down while typing another key to modify the action of that key. Examples include Ctrl, Alt, and Shift.
## Mousekeys
A feature that lets you control your mouse cursor and click from your keyboard.
A term that applies to keyboards that are capable of reporting any number of key-presses at once.
## Oneshot Modifier
A modifier that acts as if it is held down until another key is released, so you can press the mod and then press the key, rather than holding the mod while pressing the key. Also known as a Sticky key or a Dead key.
## ProMicro
A low cost AVR development board. Clones of this device are often found on ebay very inexpensively (under $5) but people often struggle with flashing their pro micros.
## Pull Request
A request to submit code to QMK. We encourage all users to submit Pull Requests for their personal keymaps.
## QWERTY
The standard English keyboard layout, and often a shortcut for other language's standard layouts. Named for the first 6 letters on the keyboard.
## QWERTZ
The standard Deutsche (German) keyboard layout. Named for the first 6 letters on the keyboard.
## Rollover
The term for pressing a key while a key is already held down. Variants include 2KRO, 6KRO, and NKRO.
## Scancode
A 1 byte number that is sent as part of a HID report over USB that represents a single key. These numbers are documented in the [HID Usage Tables](http://www.usb.org/developers/hidpage/Hut1_12v2.pdf) published by the [USB-IF](http://www.usb.org/).
## Space Cadet Shift
A special set of shift keys which allow you to type various types of braces by tapping the left or right shift one or more times.
Pressing and releasing a key. In some situations you will need to distinguish between a key down and a key up event, and Tap always refers to both at once.
## Tap Dance
A feature that lets you assign multiple keycodes to the same key based on how many times you press it.
* [Tap Dance Documentation](feature_tap_dance.md)
## Teensy
A low-cost AVR development board that is commonly used for hand-wired builds. A teensy is often chosen despite costing a few dollars more due to its halfkay bootloader, which makes flashing very simple.
## Underlight
A generic term for LEDs that light the underside of the board. These LED's typically shine away from the bottom of the PCB and towards the surface the keyboard rests on.
## Unicode
In the larger computer world Unicode is a set of encoding schemes for representing characters in any language. As it relates to QMK it means using various OS schemes to send unicode codepoints instead of scancodes.
* [Unicode Documentation](feature_unicode.md)
## Unit Testing
A framework for running automated tests against QMK. Unit testing helps us be confident that our changes do not break anything.
* [Unit Testing Documentation](unit_testing.md)
## USB
Universal Serial Bus, the most common wired interface for a keyboard.
## USB Host (or simply Host)
The USB Host is your computer, or whatever device your keyboard is plugged into.
# Couldn't Find the Term You're Looking For?
[Open an issue](https://github.com/qmk/qmk_firmware/issues) with your question and the term in question could be added here. Better still, open a pull request with the definition. :)
* Wire (strained for wiring to the Teensy, anything for the rows/columns)
* Soldering iron set at 600ºF or 315ºC (if temperature-controlled)
* Rosin-cored solder (leaded or lead-free)
* Adequate ventilation/a fan
* Tweezers (optional)
* Wire cutters/snippers
## How the Matrix Works (Why We Need Diodes)
The microcontroller (in this case, the Teensy 2.0) will be setup up via the firmware to send a logical 1 to the columns, one at a time, and read from the rows, all at once - this process is called matrix scanning. The matrix is a bunch of open switches that, by default, don't allow any current to pass through - the firmware will read this as no keys being pressed. As soon as you press one key down, the logical 1 that was coming from the column the keyswitch is attached to gets passed through the switch and to the corresponding row - check out the following 2x2 example:
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
| | | |
row0 ---(key0)---(key1) row0 ---(key0)---(key1)
| | | |
row1 ---(key2)---(key3) row1 ---(key2)---(key3)
The `x` represents that the column/row associated has a value of 1, or is HIGH. Here, we see that no keys are being pressed, so no rows get an `x`. For one keyswitch, keep in mind that one side of the contacts is connected to its row, and the other, its column.
When we press `key0`, `col0` gets connected to `row0`, so the values that the firmware receives for that row is `0b01` (the `0b` here means that this is a bit value, meaning all of the following digits are bits - 0 or 1 - and represent the keys in that column). We'll use this notation to show when a keyswitch has been pressed, to show that the column and row are being connected:
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
| | | |
x row0 ---(-+-0)---(key1) row0 ---(-+-0)---(key1)
| | | |
row1 ---(key2)---(key3) row1 ---(key2)---(key3)
We can now see that `row0` has an `x`, so has the value of 1. As a whole, the data the firmware receives when `key0` is pressed is
col0: 0b01
col1: 0b00
│└row0
└row1
A problem arises when you start pressing more than one key at a time. Looking at our matrix again, it should become pretty obvious:
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
| | | |
x row0 ---(-+-0)---(-+-1) x row0 ---(-+-0)---(-+-1)
| | | |
x row1 ---(key2)---(-+-3) x row1 ---(key2)---(-+-3)
Remember that this ^ is still connected to row1
The data we get from that is:
col0: 0b11
col1: 0b11
│└row0
└row1
Which isn't accurate, since we only have 3 keys pressed down, not all 4. This behavior is called ghosting, and only happens in odd scenarios like this, but can be much more common on a bigger keyboard. The way we can get around this is by placing a diode after the keyswitch, but before it connects to its row. A diode only allows current to pass through one way, which will protect our other columns/rows from being activated in the previous example. We'll represent a dioded matrix like this;
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
│ │ | │
(key0) (key1) (key0) (key1)
! │ ! │ ! | ! │
row0 ─────┴────────┘ │ row0 ─────┴────────┘ │
│ │ | │
(key2) (key3) (key2) (key3)
! ! ! !
row1 ─────┴────────┘ row1 ─────┴────────┘
In practical applications, the black line of the diode will be placed facing the row, and away from the keyswitch - the `!` in this case is the diode, where the gap represents the black line. A good way to remember this is to think of this symbol: `>|`
Now when we press the three keys, invoking what would be a ghosting scenario:
Column 0 being scanned Column 1 being scanned
x x
col0 col1 col0 col1
│ │ │ │
(┌─┤0) (┌─┤1) (┌─┤0) (┌─┤1)
! │ ! │ ! │ ! │
x row0 ─────┴────────┘ │ x row0 ─────┴────────┘ │
│ │ │ │
(key2) (┌─┘3) (key2) (┌─┘3)
! ! ! !
row1 ─────┴────────┘ x row1 ─────┴────────┘
Things act as they should! Which will get us the following data:
col0: 0b01
col1: 0b11
│└row0
└row1
The firmware can then use this correct data to detect what it should do, and eventually, what signals it needs to send to the OS.
# The Actual Hand-Wiring
## Getting Things in Place
When starting this, you should have all of your stabilisers and keyswitches already installed (and optionally keycaps). If you're using a Cherry-type stabiliser (plate-mounted only, obviously), you'll need to install that before your keyswitches. If you're using Costar ones, you can installed them afterwards.
To make things easier on yourself, make sure all of the keyswitches are oriented the same way (if they can be - not all layouts support this). Despite this, it's important to remember that the contacts on the keyswitches are completely symmetrical. We'll be using the keyswitch's left side contact for wiring the rows, and the right side one for wiring the columns.
Get your soldering iron heated-up and collect the rest of the materials from the part list at the beginning of the guide. Place your keyboard so that the bottoms of the keyswitches are accessible - it may be a good idea to place it on a cloth to protect your keyswitches/keycaps.
Before continuing, plan out where you're going to place your Teensy. If you're working with a board that has a large (6.25u) spacebar, it may be a good idea to place it in-between switches against the plate. Otherwise, you may want to trim some of the leads on the keyswitches where you plan on putting it - this will make it a little harder to solder the wire/diodes, but give you more room to place the Teensy.
## Preparing the Diodes
It's a little easier to solder the diodes in place if you bend them at a 90º angle immediately after the black line - this will help to make sure you put them on the right way (direction matters), and in the correct position. The diodes will look like this when bent (with longer leads):
```
┌─────┬─┐
───┤ │ ├─┐
└─────┴─┘ │
│
```
We'll be using the long lead at the bent end to connect it to the elbow (bent part) of the next diode, creating the row.
## Soldering the Diodes
Starting at the top-left switch, place the diode (with tweezers if you have them) on the switch so that the diode itself is vertically aligned, and the black line is facing toward you. The straight end of the diode should be touching the left contact on the switch, and the bent end should be facing to the right and resting on the switch there, like this:
```
│o
┌┴┐ o
│ │ O
├─┤
└┬┘
└─────────────
```
Letting the diode rest, grab your solder, and touch both it and the soldering iron to the left contact at the same time - the rosin in the solder should make it easy for the solder to flow over both the diode and the keyswitch contact. The diode may move a little, and if it does, carefully position it back it place by grabbing the bent end of the diode - the other end will become hot very quickly. If you find that it's moving too much, using needle-nose pliers of some sort may help to keep the diode still when soldering.
The smoke that the rosin releases is harmful, so be careful not to breath it or get it in your eyes/face.
After soldering things in place, it may be helpful to blow on the joint to push the smoke away from your face, and cool the solder quicker. You should see the solder develop a matte (not shiny) surface as it solidifies. Keep in mind that it will still be very hot afterwards, and will take a couple minutes to be cool to touch. Blow on it will accelerate this process.
When the first diode is complete, the next one will need to be soldered to both the keyswitch, and the previous diode at the new elbow. That will look something like this:
```
│o │o
┌┴┐ o ┌┴┐ o
│ │ O │ │ O
├─┤ ├─┤
└┬┘ └┬┘
└────────────────┴─────────────
```
After completing a row, use the wire cutters to trim the excess wire from the tops of the diodes, and from the right side on the final switch. This process will need to completed for each row you have.
When all of the diodes are completely soldered, it's a good idea to quickly inspect each one to ensure that your solder joints are solid and sturdy - repairing things after this is possible, but more difficult.
## Soldering the Columns
You'll have some options in the next process - it's a good idea to insulate the column wires (since the diodes aren't), but if you're careful enough, you can use exposed wires for the columns - it's not recommended, though. If you're using single-cored wire, stripping the plastic off of the whole wire and feeding it back on is probably the best option, but can be difficult depending on the size and materials. You'll want to leave parts of the wire exposed where you're going to be solder it onto the keyswitch.
If you're using stranded wire, it's probably easiest to just use a lot of small wires to connect each keyswitch along the column. It's possible to use one and melt through the insulation, but this isn't recommended, will produce even more harmful fumes, and can ruin your soldering iron.
Before beginning to solder, it helps to have your wire pre-bent (if using single-cored), or at least have an idea of how you're going to route the column (especially if you're making a staggered board). Where you go in particular doesn't matter too much, as we'll be basing our keymap definitions on how it was wired - just make sure every key in a particular row is in a unique column, and that they're in order from left to right.
If you're not using any insulation, you can try to keep the column wires elevated, and solder them near the tips of the keyswitch contacts - if the wires are sturdy enough, they won't short out to the row wiring an diodes.
## Wiring Things to the Teensy
Now that the matrix itself is complete, it's time to connect what you've done to the Teensy. You'll be needing the number of pins equal to your number of columns + your number of rows. There are some pins on the Teensy that are special, like D6 (the LED on the chip), or some of the UART, SPI, I2C, or PWM channels, but only avoid those if you're planning something in addition to a keyboard. If you're unsure about wanting to add something later, you should have enough pins in total to avoid a couple.
The pins you'll absolutely have to avoid are: GND, VCC, AREF, and RST - all the others are usable and accessible in the firmware.
Place the Teensy where you plan to put it - you'll have to cut wires to length in the next step, and you'll want to make sure they reach.
Starting with the first column on the right side, measure out how much wire you'll need to connect it to the first pin on the Teensy - it helps to pick a side that you'll be able to work down, to keep the wires from overlapping too much. It may help to leave a little bit of slack so things aren't too tight. Cut the piece of wire, and solder it to the Teensy, and then the column - you can solder it anywhere along the column, but it may be easiest at the keyswitch. Just be sure the wire doesn't separate from the keyswitch when soldering.
As you move from column to column, it'll be helpful to write the locations of the pins down. We'll use this data to setup the matrix in the future.
When you're done with the columns, start with the rows in the same process, from top to bottom, and write them all down. Again, you can solder anywhere along the row, as long as it's after the diode - soldering before the diode (on the keyswitch side) will cause that row not to work.
As you move along, be sure that the Teensy is staying in place - recutting and soldering the wires is a pain!
# Getting Some Basic Firmware Set Up
From here, you should have a working keyboard once you program a firmware. Before we attach the Teensy permanently to the keyboard, let's quickly get some firmware loaded onto the Teensy so we can test each keyswitch.
To start out, download [the firmware](https://github.com/qmk/qmk_firmware/) - we'll be using my (Jack's) fork of TMK called QMK/Quantum. We'll be doing a lot from the Terminal/command prompt, so get that open, along with a decent text editor like [Sublime Text](http://www.sublimetext.com/).
The first thing we're going to do is create a new project using the script in the root directory of the firmware. In your terminal, run this command with `<project_name>` replaced by the name of your project - it'll need to be different from any other project in the `keyboards/` folder:
```
util/new_project.sh <project_name>
```
You'll want to navigate to the `keyboards/<project_name>/` folder by typing, like the print-out from the script specifies:
cd keyboards/<project_name>
### `config.h`
The first thing you're going to want to modify is the `config.h` file. Find `MATRIX_ROWS` and `MATRIX_COLS` and change their definitions to match the dimensions of your keyboard's matrix.
Farther down are `MATRIX_ROW_PINS` and `MATRIX_COL_PINS`. Change their definitions to match how you wired up your matrix (looking from the top of the keyboard, the rows run top-to-bottom and the columns run left-to-right). Likewise, change the definition of `UNUSED_PINS` to match the pins you did not use (this will save power).
### `<project_name>.h`
The next file you'll want to look at is `<project_name>.h`. You're going to want to rewrite the `KEYMAP` definition - the format and syntax here is extremely important, so pay attention to how things are setup. The first half of the definition are considered the arguments - this is the format that you'll be following in your keymap later on, so you'll want to have as many k*xy* variables here as you do keys. The second half is the part that the firmware actually looks at, and will contain gaps depending on how you wired your matrix.
We'll dive into how this will work with the following example. Say we have a keyboard like this:
```
┌───┬───┬───┐
│ │ │ │
├───┴─┬─┴───┤
│ │ │
└─────┴─────┘
```
This can be described by saying the top row is 3 1u keys, and the bottom row is 2 1.5u keys. The difference between the two rows is important, because the bottom row has an unused column spot (3 v 2). Let's say that this is how we wired the columns:
```
┌───┬───┬───┐
│ ┋ │ ┋ │ ┋ │
├─┋─┴─┬─┴─┋─┤
│ ┋ │ ┋ │
└─────┴─────┘
```
The middle column is unused on the bottom row in this example. Our `KEYMAP` definition would look like this:
```
#define KEYMAP( \
k00, k01, k02, \
k10, k11, \
) \
{ \
{ k00, k01, k02 }, \
{ k10, KC_NO, k11 }, \
}
```
Notice how the top half is spaced to resemble our physical layout - this helps us understand which keys are associated with which columns. The bottom half uses the keycode `KC_NO` where there is no keyswitch wired in. It's easiest to keep the bottom half aligned in a grid to help us make sense of how the firmware actually sees the wiring.
Let's say that instead, we wired our keyboard like this (a fair thing to do):
```
┌───┬───┬───┐
│ ┋ │ ┋│ ┋ │
├─┋─┴─┬┋┴───┤
│ ┋ │┋ │
└─────┴─────┘
```
This would require our `KEYMAP` definition to look like this:
```
#define KEYMAP( \
k00, k01, k02, \
k10, k11, \
) \
{ \
{ k00, k01, k02 }, \
{ k10, k11, KC_NO }, \
}
```
Notice how the `k11` and `KC_NO` switched places to represent the wiring, and the unused final column on the bottom row. Sometimes it'll make more sense to put a keyswitch on a particular column, but in the end, it won't matter, as long as all of them are accounted for. You can use this process to write out the `KEYMAP` for your entire keyboard - be sure to remember that your keyboard is actually backwards when looking at the underside of it.
### `keymaps/<variant>/default.c`
This is the actual keymap for your keyboard, and the main place you'll make changes as you perfect your layout. `default.c` is the file that gets pull by default when typing `make`, but you can make other files as well, and specify them by typing `make handwired/<keyboard>:<variant>`, which will pull `keymaps/<variant>/keymap.c`.
The basis of a keymap is its layers - by default, layer 0 is active. You can activate other layers, the highest of which will be referenced first. Let's start with our base layer.
Using our previous example, let's say we want to create the following layout:
```
┌───┬───┬───┐
│ A │ 1 │ H │
├───┴─┬─┴───┤
│ TAB │ SPC │
└─────┴─────┘
```
This can be accomplished by using the following `keymaps` definition:
Note that the layout of the keycodes is similar to the physical layout of our keyboard - this make it much easier to see what's going on. A lot of the keycodes should be fairly obvious, but for a full list of them, check out [Keycodes](keycodes.md) - there are also a lot of aliases to condense your keymap file.
It's also important to use the `KEYMAP` function we defined earlier - this is what allows the firmware to associate our intended readable keymap with the actual wiring.
## Compiling Your Firmware
After you've written out your entire keymap, you're ready to get the firmware compiled and onto your Teensy. Before compiling, you'll need to get your [development environment set-up](getting_started_build_tools.md) - you can skip the dfu-programmer instructions, but you'll need to download and install the [Teensy Loader](https://www.pjrc.com/teensy/loader.html) to get the firmware on your Teensy.
Once everything is installed, running `make` in the terminal should get you some output, and eventually a `<project_name>.hex` file in that folder. If you're having trouble with this step, see the end of the guide for the trouble-shooting section.
Once you have your `<project_name>.hex` file, open up the Teensy loader application, and click the file icon. From here, navigate to your `QMK/keyboards/<project_name>/` folder, and select the `<project_name>.hex` file. Plug in your keyboard and press the button on the Teensy - you should see the LED on the device turn off once you do. The Teensy Loader app will change a little, and the buttons should be clickable - click the download button (down arrow), and then the reset button (right arrow), and your keyboard should be ready to go!
## Testing Your Firmware
Carefully flip your keyboard over, open up a new text document, and try typing - you should get the characters that you put into your keymap. Test each key, and note the ones that aren't working. Here's a quick trouble-shooting guide for non-working keys:
0. Flip the keyboard back over and short the keyswitch's contacts with a piece wire - this will eliminate the possibility of the keyswitch being bad and needing to be replaced.
1. Check the solder points on the keyswitch - these need to be plump and whole. If you touch it with a moderate amount of force and it comes apart, it's not strong enough.
2. Check the solder joints on the diode - if the diode is loose, part of your row may register, while the other may not.
3. Check the solder joints on the columns - if your column wiring is loose, part or all of the column may not work.
4. Check the solder joints on both sides of the wires going to/from the Teensy - the wires need to be fully soldered and connect to both sides.
5. Check the <project_name>.h file for errors and incorrectly placed `KC_NO`s - if you're unsure where they should be, instead duplicate a k*xy* variable.
6. Check to make sure you actually compiled the firmware and flashed the Teensy correctly. Unless you got error messages in the terminal, or a pop-up during flashing, you probably did everything correctly.
If you've done all of these things, keep in mind that sometimes you might have had multiple things affecting the keyswitch, so it doesn't hurt to test the keyswitch by shorting it out at the end.
# Securing the Teensy, Finishing Your Hardware, Getting Fancier Firmware
Now that you have a working board, it's time to get things in their permanent positions. I've often used liberal amounts of hot glue to secure and insulate things, so if that's your style, start spreading that stuff like butter. Otherwise, double-sided tape is always an elegant solution, and electrical tape is a distant second. Due to the nature of these builds, a lot of this part is up to you and how you planned (or didn't plan) things out.
There are a lot of possibilities inside the firmware - explore [docs.qmk.fm](http://docs.qmk.fm) for a full feature list, and dive into the different project (Planck, Clueboard, Ergodox EZ, etc) to see how people use all of them. You can always stop by [the OLKB subreddit for help!](http://reddit.com/r/olkb)
QMK runs on a variety of hardware. If your processor can be targeted by [LUFA](http://www.fourwalledcubicle.com/LUFA.php) or [ChibiOS](http://www.chibios.com) you can probably get QMK running on it. This section explores getting QMK running on, and communicating with, hardware of all kinds.
This page describes the support for for AVR processors in QMK. AVR processors include the atmega32u4, atmega32u2, at90usb1286, and other processors from Atmel Corporation. AVR processors are 8-bit MCU's that are designed to be easy to work with. The most common AVR processors in keyboards have on-board USB and plenty of GPIO for supporting large keyboard matrices. They are the most popular MCU for use in keyboards today.
If you have not yet you should read the [Keyboard Guidelines](hardware_keyboard_guidelines.md) to get a sense of how keyboards fit into QMK.
## Adding Your AVR Keyboard to QMK
QMK has a number of features to simplify working with AVR keyboards. For most keyboards you don't have to write a single line of code. To get started run the `util/new_project.sh` script:
This will create all the files needed to support your new keyboard, and populate the settings with default values. Now you just need to customize it for your keyboard.
## `readme.md`
This is where you'll describe your keyboard. Please follow the [Keyboard Readme Template](documentation_templates.md#keyboard-readmemd-template) when writing your `readme.md`. You're encouraged to place an image at the top of your `readme.md`, please use an external service such as [Imgur](http://imgur.com) to host the images.
## `<keyboard>.c`
This is where all the custom logic for your keyboard goes. Many keyboards do not need to put anything at all in here. You can learn more about writing custom logic in [Custom Quantum Functions](custom_quantum_functions.md).
## `<keyboard>.h`
This is the file you define your [Layout Macro(s)](feature_layouts.md) in. At minimum you should have a `#define LAYOUT` for your keyboard that looks something like this:
```
#define LAYOUT( \
k00, k01, k02, \
k10, k11 \
) { \
{ k00, k01, k02 }, \
{ k10, KC_NO, k11 }, \
}
```
The first half of the `LAYOUT` pre-processor macro defines the physical arrangement of keys. The second half of the macro defines the matrix the switches are connected to. This allows you to have a physical arrangement of keys that differs from the wiring matrix.
Each of the `k__` variables needs to be unique, and typically they follow the format `k<row><col>`.
The physical matrix (the second half) must have a number of rows equaling `MATRIX_ROWS`, and each row must have exactly `MATRIX_COLS` elements in it. If you do not have this many physical keys you can use `KC_NO` to fill in the blank spots.
## `config.h`
The `config.h` file is where you configure the hardware and feature set for your keyboard. There are a lot of options that can be placed in that file, too many to list there. For a complete overview of available options see the [Config Options](config_options.md) page.
### Hardware Configuration
At the top of the `config.h` you'll find USB related settings. These control how your keyboard appears to the Operating System. If you don't have a good reason to change you should leave the `VENDOR_ID` as `0xFEED`. For the `PRODUCT_ID` you should pick a number that is not yet in use.
Do change the `MANUFACTURER`, `PRODUCT`, and `DESCRIPTION` lines to accurately reflect your keyboard.
```
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x6060
#define DEVICE_VER 0x0001
#define MANUFACTURER You
#define PRODUCT my_awesome_keyboard
#define DESCRIPTION A custom keyboard
```
{% hint style='info' %}
Note: On Windows and macOS the `MANUFACTURER`, `PRODUCT`, and `DESCRIPTION` fields will be displayed in the list of USB devices. On Linux these values will not be visible in `lsusb`, since Linux takes that information from the list published by the USB-IF.
{% endhint %}
### Keyboard Matrix Configuration
The next section of the `config.h` file deals with your keyboard's matrix. The first thing you should set is the matrix's size. This is usually, but not always, the same number of rows and columns as the physical key arrangement.
```
#define MATRIX_ROWS 2
#define MATRIX_COLS 3
```
Once you've defined the size of your matrix you need to define which pins on your MCU are connected to rows and columns. To do so simply specify the names of those pins:
```
#define MATRIX_ROW_PINS { D0, D5 }
#define MATRIX_COL_PINS { F1, F0, B0 }
#define UNUSED_PINS
```
The number of `MATRIX_ROW_PINS` entries must be the same as the number you assigned to `MATRIX_ROWS`, and likewise for `MATRIX_COL_PINS` and `MATRIX_COLS`. You do not have to specify `UNUSED_PINS`, but you can if you want to document what pins are open.
Finally, you can specify the direction your diodes point. This can be `COL2ROW`, `ROW2COL`, or `CUSTOM_MATRIX`.
```
#define DIODE_DIRECTION COL2ROW
```
### Backlight Configuration
By default QMK supports backlighting on pins `B5`, `B6`, and `B7`. If you are using one of those you can simply enable it here. For more details see the [Backlight Documentation](feature_backlight.md).
```
#define BACKLIGHT_PIN B7
#define BACKLIGHT_LEVELS 3
#define BACKLIGHT_BREATHING
#define BREATHING_PERIOD 6
```
{% hint style='info' %}
You can use backlighting on any pin you like, but you will have to do more work to support that. See the [Backlight Documentation](feature_backlight.md) for more details.
{% endhint %}
### Other Configuration Options
There are a lot of features that can be configured or tuned in `config.h`. You should see the [Config Options](config_options.md) page for more details.
## `rules.mk`
You use the `rules.mk` file to tell QMK what files to build and what features to enable. If you are building around an atmega32u4 you can largely leave these defaults alone. If you are using another MCU you may have to tweak some parameters.
### MCU Options
These options tell the build system what CPU to build for. Be very careful if you change any of these settings, you can render your keyboard inoperable.
```
MCU = atmega32u4
F_CPU = 16000000
ARCH = AVR8
F_USB = $(F_CPU)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
```
### Bootloader Size
The bootloader is a special section of your MCU that allows you to upgrade the code stored on the MCU. Think of it like a Rescue Partition for your keyboard. If you are using a teensy 2.0, or a device like the Ergodox EZ that uses the teensy bootloader you should set this to `512`. Most other bootloaders should be set to `4096`, but `1024` and `2048` are other possible values you may encounter.
#### Teensy 2.0 Bootloader Example
```
OPT_DEFS += -DBOOTLOADER_SIZE=512
```
#### Teensy 2.0++ Bootloader Example
```
OPT_DEFS += -DBOOTLOADER_SIZE=1024
```
#### Atmel DFU Loader Example
```
OPT_DEFS += -DBOOTLOADER_SIZE=4096
```
### Build Options
There are a number of features that can be turned on or off in `rules.mk`. See the [Config Options](config_options.md#feature-options) page for a detailed list and description.
QMK is used on a lot of different hardware. While support for the most common MCU's and matrix configurations is built-in there are a number of drivers that can be added to a keyboard to support additional hardware. Examples include mice and other pointing devices, i/o expanders for split keyboards, bluetooth modules, and LCD, OLED, and TFT screens.
<!-- FIXME: This should talk about how drivers are integrated into QMK and how you can add your own driver.
# Driver System Overview
-->
# Available Drivers
## ProMicro (AVR Only)
Support for addressing pins on the ProMicro by their Arduino name rather than their AVR name. This needs to be better documented, if you are trying to do this and reading the code doesn't help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) and we can help you through the process.
## SSD1306 (AVR Only)
Support for SSD1306 based OLED displays. This needs to be better documented, if you are trying to do this and reading the code doesn't help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) and we can help you through the process.
## uGFX
You can make use of uGFX within QMK to drive character and graphic LCD's, LED arrays, OLED, TFT, and other display technologies. This needs to be better documented, if you are trying to do this and reading the code doesn't help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) and we can help you through the process.
## WS2812 (AVR Only)
Support for WS2811/WS2812{a,b,c} LED's. For more information see the [RGB Light](feature_rgblight.md) page.
We welcome all keyboard projects into QMK, but ask that you try to stick to a couple guidelines that help us keep things organised and consistent.
## Naming Your Keyboard/Project
All names should be lowercase alphanumeric, and separated by an underscore (`_`), but not begin with one. Your directory and your `.h` and `.c` files should have exactly the same name. All folders should follow the same format.
## `readme.md`
All projects need to have a `readme.md` file that explains what the keyboard is, who made it, where it is available, and links to more information. Please follow the [published template](documentation_templates.md#keyboard-readmemd-template).
## Image/Hardware Files
In an effort to keep the repo size down, we're no longer accepting images of any format in the repo, with few exceptions. Hosting them elsewhere (imgur) and linking them in the `readme.md` is the preferred method.
Any sort of hardware file (plate, case, pcb) can't be stored in qmk_firmware, but we have the [qmk.fm repo](https://github.com/qmk/qmk.fm) where such files (as well as in-depth info) can be stored and viewed on [qmk.fm](http://qmk.fm). Downloadable files are stored in `/<keyboard>/` (name follows the same format as above) which are served at `http://qmk.fm/<keyboard>/`, and pages are generated from `/_pages/<keyboard>/` which are served at the same location (.md files are generated into .html files through Jekyll). Check out the `lets_split` directory for an example.
## Keyboard Metadata
As QMK grows so does the ecosystem surrounding QMK. To make it easier for projects in that ecosystem to tie into QMK as we make changes we are developing a metadata system to expose information about keyboards in QMK.
You can create `info.json` files at every level under `qmk_firmware/keyboards/<name>` to specify this metadata. These files are combined, with more specific files overriding keys in less specific files. This means you do not need to duplicate your metadata information. For example, `qmk_firmware/keyboards/clueboard/info.json` specifies `manufacturer` and `maintainer`, while `qmk_firmware/keyboards/clueboard/66/info.json` specifies more specific information about Clueboard 66%.
### `info.json` Format
The `info.json` file is a JSON formatted dictionary with the following keys available to be set. You do not have to set all of them, merely the keys that apply to your keyboard.
*`keyboard_name`
* A free-form text string describing the keyboard.
* Example: `Clueboard 66%`
*`manufacturer`
* A free-form text string naming the manufacturer.
* Example: `Clueboard`
*`identifier`
* The Vendor, Product, and Revision ID's joined by a :
* Example: `c1ed:2370:0001`
*`url`
* A URL to the keyboard's product page, [QMK.fm/keyboards](https://qmk.fm/keyboards) page, or other page describing information about the keyboard.
*`processor`
* The MCU or CPU this keyboard uses.
* Example: `atmega32u4` or `stm32f303`
*`bootloader`
* What bootloader this keyboard uses. Available options:
*`atmel-dfu`
*`kiibohd-dfu-util`
*`lufa-dfu`
*`qmk-dfu`
*`stm32-dfu-util`
* (FIXME: This list is incomplete.)
*`maintainer`
* GitHub username of the maintainer, or `qmk` for community maintained boards
*`width`
* Width of the board in Key Units
*`height`
* Height of the board in Key Units
*`layouts`
* Physical Layout representations. See the next section for more detail.
#### Layout Format
Within our `info.json` file the `layouts` portion of the dictionary contains several nested dictionaries. The outer layer consists of QMK layout macros, for example `LAYOUT_ansi` or `LAYOUT_iso`. Within each layout macro are keys for `width`, `height`, and `key_count`, each of which should be self-explanatory.
*`width`
* Optional: The width of the layout in Key Units
*`height`
* Optional: The height of the layout in Key Units
*`key_count`
* **Required**: The number of keys in this layout
*`layout`
* A list of Key Dictionaries describing the physical layout. See the next section for more details.
#### Key Dictionary Format
Each Key Dictionary in a layout describes the physical properties of a key. If you are familiar with the Raw Code for <http://keyboard-layout-editor.com> you will find many of the concepts the same. We re-use the same key names and layout choices wherever possible, but unlike keyboard-layout-editor each key is stateless, inheriting no properties from the keys that came before it.
All key positions and rotations are specified in relation to the top-left corner of the keyboard, and the top-left corner of each key.
*`X`
* **Required**: The absolute position of the key in the horizontal axis, in Key Units.
*`Y`
* **Required**: The absolute position of the key in the vertical axis, in Key Units.
*`W`
* The width of the key, in Key Units. Ignored if `ks` is provided. Default: `1`
*`H`
* The height of the key, in Key Units. Ignored if `ks` is provided. Default: `1`
*`R`
* How many degrees clockwise to rotate the key.
*`RX`
* The absolute position of the point to rotate the key around in the horizontal axis. Default: `x`
*`RY`
* The absolute position of the point to rotate the key around in the vertical axis. Default: `y`
*`KS`
* Key Shape: define a polygon by providing a list of points, in Key Units.
* **Important**: These are relative to the top-left of the key, not absolute.
* Example ISO Enter: `[ [0,0], [1.5,0], [1.5,2], [0.25,2], [0.25,1], [0,1], [0,0] ]`
### How is the Metadata Exposed?
This metadata is primarily used in two ways:
* To allow web-based configurators to dynamically generate UI
* To support the new `make keyboard:keymap:qmk` target, which bundles this metadata up with the firmware to allow QMK Toolbox to be smarter.
Configurator authors can see the [QMK Compiler](https://docs.compile.qmk.fm/api_docs.html) docs for more information on using the JSON API.
## Non-Production/Handwired Projects
We're happy to accept any project that uses QMK, including prototypes and handwired ones, but we have a separate `/keyboards/handwired/` folder for them, so the main `/keyboards/` folder doesn't get overcrowded. If a prototype project becomes a production project at some point in the future, we'd be happy to move it to the main `/keyboards/` folder!
## Warnings as Errors
When developing your keyboard, keep in mind that all warnings will be treated as errors - these small warnings can build-up and cause larger errors down the road (and keeping them is generally a bad practice).
## Copyright Blurb
If you're adapting your keyboard's setup from another project, but not using the same code, but sure to update the copyright header at the top of the files to show your name, in this format:
Copyright 2017 Your Name <your@email.com>
If you are modifying someone else's code and have made only trivial changes you should leave their name in the copyright statement. If you have done significant work on the file you should add your name to theirs, like so:
Copyright 2017 Their Name <original_author@example.com> Your Name <you@example.com>
The year should be the first year the file is created. If work was done to that file in later years you can reflect that by appending the second year to the first, like so:
Copyright 2015-2017 Your Name <you@example.com>
## License
The core of QMK is licensed under the [GNU General Public License](https://www.gnu.org/licenses/licenses.en.html). If you are shipping binaries for AVR processors you may choose either [GPLv2](https://www.gnu.org/licenses/old-licenses/gpl-2.0.html) or [GPLv3](https://www.gnu.org/licenses/gpl.html). If you are shipping binaries for ARM processors you must choose [GPL Version 3](https://www.gnu.org/licenses/gpl.html) to comply with the [ChibiOS](http://www.chibios.org) GPLv3 license.
If your keyboard makes use of the [uGFX](https://ugfx.io) features within QMK you must comply with the [uGFX License](https://ugfx.io/license.html), which requires a separate commercial license before selling a device containing uGFX.
## Technical Details
If you're looking for more information on making your keyboard work with QMK, [check out the hardware section](hardware.md)!
# How Keys Are Registered, and Interpreted by Computers
In this file, you can will learn the concepts of how keyboards work over USB,
and you'll be able to better understand what you can expect from changing your
firmware directly.
## Schematic View
Whenever you type on 1 particular key, here is the chain of actions taking
place:
``` text
+------+ +-----+ +----------+ +----------+ +----+
| User |-------->| Key |------>| Firmware |----->| USB wire |---->| OS |
+------+ +-----+ +----------+ +----------+ |----+
```
This scheme is a very simple view of what's going on, and more details follow
in the next sections.
## 1. You Press a Key
Whenever you press a key, the firmware of your keyboard can register this event.
It can register when the key is pressed, held and released.
This usually happens with a periodic scan of key presses. This speed often is limited by the mechanical key response time, the protocol to transfer those key presses (here USB HID), and by the software it is used in.
## 2. What the Firmware Sends
The [HID specification](http://www.usb.org/developers/hidpage/Hut1_12v2.pdf) tells what a keyboard can actually send through USB to have a chance to be properly recognised. This includes a pre-defined list of scancodes which are simple numbers from `0x00` to `0xE7`. The firmware assigns a scancode to each key of the keyboard.
The firmware does not send actually letters or characters, but only scancodes.
Thus, by modifying the firmware, you only can modify what scancode is sent over
USB for a given key.
## 3. What the Operating System Does
Once the keycode reaches the operating system, a piece of software has to have
it match an actual character thanks to a keyboard layout. For example, if your
layout is set to QWERTY, a sample of the matching table is as follow:
| keycode | character |
|---------|-----------|
| 0x04 | a/A |
| 0x05 | b/B |
| 0x06 | c/C |
| ... | ... |
| 0x1C | y/Y |
| 0x1D | z/Z |
| ... | ... |
## Back to the Firmware
As the layout is generally fixed (unless you create your own), the firmware can actually call a keycode by its layout name directly to ease things for you. This is exactly what is done here with `KC_A` actually representing `0x04` in QWERTY. The full list can be found in [keycodes](keycodes.md).
## List of Characters You Can Send
Putting aside shortcuts, having a limited set of keycodes mapped to a limited layout means that **the list of characters you can assign to a given key only is the ones present in the layout**.
For example, this means that if you have a QWERTY US layout, and you want to assign 1 key to produce `€` (euro currency symbol), you are unable to do so, because the QWERTY US layout does not have such mapping. You could fix that by using a QWERTY UK layout, or a QWERTY US International.
You may wonder why a keyboard layout containing all of Unicode is not devised then? The limited number of keycode available through USB simply disallow such a thing.
## How to (Maybe) Enter Unicode Characters
You can have the firmware send *sequences of keys* to use the [software Unicode Input Method](https://en.wikipedia.org/wiki/Unicode_input#Hexadecimal_code_input) of the target operating system, thus effectively entering characters independently of the layout defined in the OS.
Yet, it does come with multiple disadvantages:
- Tied to a specific OS a a time (need recompilation when changing OS);
- Within a given OS, does not work in all software;
You're likely going to need to ISP flash your board/device to get it working again. Luckily, this process is pretty straight-forward, provided you have any extra programmable keyboard, Arduino, or Teensy 2.0/Teensy 2.0++. There are also dedicated ISP flashers available for this, but most cost >$15, and it's assumed that if you are googling this error, this is the first you've heard about ISP flashing, and don't have one readily available (whereas you might have some other AVR board). __We'll be using a Teensy 2.0 with Windows 10 in this guide__ - if you are comfortable doing this on another system, please consider editing this guide and contributing those instructions!
Then scroll down until you see something that looks like this block of code:
// Configure which pins to use:
// The standard pin configuration.
#ifndef ARDUINO_HOODLOADER2
#define RESET 0 // Use 0 (B0) instead of 10
#define LED_HB 11 // Use 11 (LED on the Teensy 2.0)
#define LED_ERR 8 // This won't be used unless you have an LED hooked-up to 8 (D3)
#define LED_PMODE 7 // This won't be used unless you have an LED hooked-up to 7 (D2)
And make the changes in the last four lines. If you're using something besides the Teensy 2.0, you'll want to choose something else that makes sense for `LED_HB`. We define `RESET` as `0`/`B0` because that's what's close - if you want to use another pin for some reason, [you can use the pinouts to choose something else](https://www.pjrc.com/teensy/pinout.html).
Once you've made your changes, you can click the Upload button (right arrow), which will open up the Teensy flasher app - you'll need to press the reset button on the Teensy the first time, but after that, it's automatic (you shouldn't be flashing this more than once, though). Once flashed, the orange LED on the Teensy will flash on and off, indicating it's ready for some action.
## The `.hex` File
Before flashing your firmware, you're going to need to and do a little preparation. We'll be appending [this bootloader (also a .hex file)](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_atmega32u4_1_0_0.hex) to the end of our firmware by opening the original .hex file in a text editor, and removing the last line, which should be `:00000001FF` (this is an EOF message). After that's been removed, copy the entire bootloader's contents and paste it at the end of the original file, and save it.
It's possible to use other bootloaders here in the same way, but __you need a bootloader__, otherwise you'll have to ISP to write new firmware to your keyboard.
## Flashing Your Firmware
Make sure your keyboard is unplugged from any device, and plug in your Teensy.
Open `cmd` and navigate to your where your modified .hex file is. We'll pretend this file is called `main.hex`, and that your Teensy 2.0 is on the `COM3` port - if you're unsure, you can open your Device Manager, and look for `Ports > USB Serial Device`. Use that COM port here. You can confirm it's the right port with:
avrdude -c avrisp -P COM3 -p atmega32u4
and you should get something like the following output:
avrdude: AVR device initialized and ready to accept instructions
You should see a couple of progress bars, then you should see:
avrdude: verifying ...
avrdude: 32768 bytes of flash verified
avrdude: safemode: Fuses OK
avrdude done. Thank you.
Which means everything should be ok! Your board may restart automatically, otherwise, unplug your Teensy and plug in your keyboard - you can leave your Teensy wired to your keyboard while testing things, but it's recommended that you desolder it/remove the wiring once you're sure everything works.
If you have any questions/problems, feel free to [open an issue](https://github.com/qmk/qmk_firmware/issues/new)!
When defining a [keymap](keymap.md) each key needs a valid key definition. This page documents the symbols that correspond to keycodes that are available to you in QMK.
This is a reference only. Each group of keys links to the page documenting their functionality in more detail.
|`LCTL_T(kc)`|`CTL_T(kc)` |Left Control when held, `kc` when tapped |
|`RCTL_T(kc)`| |Right Control when held, `kc` when tapped |
|`LSFT_T(kc)`|`SFT_T(kc)` |Left Shift when held, `kc` when tapped |
|`RSFT_T(kc)`| |Right Shift when held, `kc` when tapped |
|`LALT_T(kc)`|`ALT_T(kc)` |Left Alt when held, `kc` when tapped |
|`RALT_T(kc)`|`ALGR_T(kc)`|Right Alt when held, `kc` when tapped |
|`LGUI_T(kc)`|`GUI_T(kc)` |Left GUI when held, `kc` when tapped |
|`RGUI_T(kc)`| |Right GUI when held, `kc` when tapped |
|`C_S_T(kc)` | |Left Control and Shift when held, `kc` when tapped |
|`MEH_T(kc)` | |Left Control, Shift and Alt when held, `kc` when tapped|
|`LCAG_T(kc)`| |Left Control, Alt and GUI when held, `kc` when tapped |
|`RCAG_T(kc)`| |Right Control, Alt and GUI when held, `kc` when tapped |
|`ALL_T(kc)` | |Left Control, Shift, Alt and GUI when held, `kc` when tapped - more info [here](http://brettterpstra.com/2012/12/08/a-useful-caps-lock-key/)|
|`SCMD_T(kc)`|`SWIN_T(kc)`|Left Shift and GUI when held, `kc` when tapped |
|`LCA_T(kc)` | |Left Control and Alt when held, `kc` when tapped |
The basic set of keycodes are based on the [HID Keyboard/Keypad Usage Page (0x07)](http://www.usb.org/developers/hidpage/Hut1_12v2.pdf) with the exception of `KC_NO`, `KC_TRNS` and keycodes in the `0xA5-DF` range. See below for more details.
|`KC_APPLICATION` |`KC_APP` |Application (Windows Menu Key)|
|`KC_POWER` | |Power |
|`KC_EXECUTE` | |Execute |
|`KC_HELP` | |Help |
|`KC_MENU` | |Menu |
|`KC_SELECT` | |Select |
|`KC_AGAIN` | |Again |
|`KC_UNDO` | |Undo |
|`KC_CUT` | |Cut |
|`KC_COPY` | |Copy |
|`KC_PASTE` | |Paste |
|`KC_FIND` | |Find |
|`KC_ALT_ERASE` | |Alternate Erase |
|`KC_SYSREQ` | |SysReq/Attention |
|`KC_CANCEL` | |Cancel |
|`KC_CLEAR` | |Clear |
|`KC_PRIOR` | |Prior |
|`KC_RETURN` | |Return |
|`KC_SEPARATOR` | |Separator |
|`KC_OUT` | |Out |
|`KC_OPER` | |Oper |
|`KC_CLEAR_AGAIN` | |Clear/Again |
|`KC_CRSEL` | |CrSel/Props |
|`KC_EXSEL` | |ExSel |
## Media Keys
These keycodes are not part of the Keyboard/Keypad usage page. The `SYSTEM_` keycodes are found in the Generic Desktop page, and the rest are located in the Consumer page.
Windows and macOS use different keycodes for "next track" and "previous track". Make sure you choose the keycode that corresponds to your OS.
These keycodes correspond to characters that are "shifted" on a standard US ANSI keyboards. They do not have dedicated keycodes but are instead typed by holding down shift and then sending a keycode.
It's important to remember that all of these keycodes send a left shift - this may cause unintended actions if unaccounted for. The short code is preferred in most situations.
QMK keymaps are defined inside a C source file. The data structure is an array of arrays. The outer array is a list of layer arrays while the inner layer array is a list of keys. Most keyboards define a `KEYMAP()` macro to help you create this array of arrays.
## Keymap and Layers
In QMK, **`const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS]`** holds multiple **layers** of keymap information in **16 bit** data holding the **action code**. You can define **32 layers** at most.
For trivial key definitions, the higher 8 bits of the **action code** are all 0 and the lower 8 bits holds the USB HID usage code generated by the key as **keycode**.
Respective layers can be validated simultaneously. Layers are indexed with 0 to 31 and higher layer has precedence.
Keymap: 32 Layers Layer: action code matrix
----------------- ---------------------
stack of layers array_of_action_code[row][column]
____________ precedence _______________________
/ / | high / ESC / F1 / F2 / F3 ....
31 /___________// | /-----/-----/-----/-----
30 /___________// | / TAB / Q / W / E ....
29 /___________/ | /-----/-----/-----/-----
: _:_:_:_:_:__ | : /LCtrl/ A / S / D ....
: / : : : : : / | : / : : : :
2 /___________// | 2 `--------------------------
1 /___________// | 1 `--------------------------
0 /___________/ V low 0 `--------------------------
Sometimes, the action code stored in keymap may be referred as keycode in some documents due to the TMK history.
### Keymap Layer Status
The state of the Keymap layer is determined by two 32 bit parameters:
* **`default_layer_state`** indicates a base keymap layer (0-31) which is always valid and to be referred (the default layer).
* **`layer_state`** has current on/off status of each layer in its bits.
Keymap layer '0' is usually `default_layer`, wither other layers initially off after booting up the firmware, although this can configured differently in `config.h`. It is useful to change `default_layer` when you completely switch a key layout, for example, if you want to switch to Colemak instead of Qwerty.
Initial state of Keymap Change base layout
----------------------- ------------------
31 31
30 30
29 29
: :
: : ____________
2 ____________ 2 / /
1 / / ,->1 /___________/
,->0 /___________/ | 0
| |
`--- default_layer = 0 `--- default_layer = 1
layer_state = 0x00000001 layer_state = 0x00000002
On the other hand, you can change `layer_state` to overlay the base layer with other layers for features such as navigation keys, function keys (F1-F12), media keys, and/or special actions.
Forthisexamplewewillwalkthroughan [older version of the default Clueboard 66% keymap](https://github.com/qmk/qmk_firmware/blob/ca01d94005f67ec4fa9528353481faa622d949ae/keyboards/clueboard/keymaps/default/keymap.c).You'llfindithelpfultoopenthatfileinanotherbrowserwindowsoyoucanlookateverythingincontext.
> TMK from which QMK was forked uses `const uint8_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS]` instead and holds the 8 bit keycode. Some keycode values are reserved to induce execution of certain action codes via the `fn_actions[]` array.
> This `fn_actions[]` interface is mostly for backward compatibility. In QMK, you don't need to use `fn_actions[]`. You can directly use `ACTION_FUNCTION(N)` or any other action code value itself normally generated by the macro in `keymaps[][MATRIX_ROWS][MATRIX_COLS]`. N in `F(N)` can only be 0 to 31. Use of the action code directly in `keymaps` unlocks this limitation.
This should have given you a basic overview for creating your own keymap. For more details see the following resources:
* [Keycodes](keycodes.md)
* [Keymap FAQ](faq_keymap.md)
We are actively working to improve these docs. If you have suggestions for how they could be made better please [file an issue](https://github.com/qmk/qmk_firmware/issues/new)!
Setting up your ARM based PCB is a little more involved than an Atmel MCU, but is easy enough. Start by using `util/new_project.sh <keyboard>` to create a new project:
The `USB Device descriptor parameter` block contains parameters are used to uniquely identify your keyboard, but they don't really matter to the machine.
Your `MATRIX_ROWS` and `MATRIX_COLS` are the numbers of rows and cols in your keyboard matrix - this may be different than the number of actual rows and columns on your keyboard. There are some tricks you can pull to increase the number of keys in a given matrix, but most keyboards are pretty straight-forward.
The `MATRIX_ROW_PINS` and `MATRIX_COL_PINS` are the pins your MCU uses on each row/column. Your schematic (if you have one) will have this information on it, and the values will vary depending on your setup. This is one of the most important things to double-check in getting your keyboard setup correctly.
For the `DIODE_DIRECTION`, most hand-wiring guides will instruct you to wire the diodes in the `COL2ROW` position, but it's possible that they are in the other - people coming from EasyAVR often use `ROW2COL`. Nothing will function if this is incorrect.
`BACKLIGHT_PIN` is the pin that your PWM-controlled backlight (if one exists) is hooked-up to. Currently only B5, B6, and B7 are supported.
`BACKLIGHT_BREATHING` is a fancier backlight feature that adds breathing/pulsing/fading effects to the backlight. It uses the same timer as the normal backlight. These breathing effects must be called by code in your keymap.
`BACKLIGHT_LEVELS` is how many levels exist for your backlight - max is 15, and they are computed automatically from this number.
## `/keyboards/<keyboard>/Makefile`
The values at the top likely won't need to be changed, since most boards use the `atmega32u4` chip. The `BOOTLOADER_SIZE` will need to be adjusted based on your MCU type. It's defaulted to the Teensy, since that's the most common controller. Below is quoted from the `Makefile`.
```
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
```
At the bottom of the file, you'll find lots of features to turn on and off - all of these options should be set with `?=` to allow for the keymap overrides. `?=` only assigns if the variable was previously undefined. For the full documentation of these features, see the [Makefile options](#makefile-options).
## `/keyboards/<keyboard>/readme.md`
This is where you'll describe your keyboard - please write as much as you can about it! Talking about default functionality/features is useful here. Feel free to link to external pages/sites if necessary. Images can be included here as well. This file will be rendered into a webpage at qmk.fm/keyboards/<keyboard>/.
## `/keyboards/<keyboard>/<keyboard>.c`
This is where all of the custom logic for your keyboard goes - you may not need to put anything in this file, since a lot of things are configured automatically. All of the `*_kb()` functions are defined here. If you modify them, remember to keep the calls to `*_user()`, or things in the keymaps might not work. You can read more about the functions [here](#custom-quantum-functions-for-keyboards-and-keymaps)
## `/keyboards/<keyboard>/<keyboard>.h`
Here is where you can (optionally) define your `KEYMAP` function to remap your matrix into a more readable format. With ortholinear boards, this isn't always necessary, but it can help to accommodate the dead spots on your matrix, where there are keys that take up more than one space (2u, staggering, 6.25u, etc). The example shows the difference between the physical keys, and the matrix design:
```
#define KEYMAP( \
k00, k01, k02, \
k10, k11 \
) \
{ \
{ k00, k01, k02 }, \
{ k10, KC_NO, k11 }, \
}
```
Each of the `kxx` variables needs to be unique, and usually follows the format `k<row><col>`. You can place `KC_NO` where your dead keys are in your matrix.
ACSR Analog Comparator Control and Status Register
To disable Analog Comparator
ACSR = 0x80;
or
ACSR &= ~_BV(ACIE);
ACSR |= _BV(ACD);
ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is
switched off. This bit can be set at any time to turn off the Analog
Comparator. This will reduce power consumption in Active and Idle mode.
When changing the ACD bit, the Analog Comparator Interrupt must be disabled
by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when
the bit is changed.
DIDR1 Digital Input Disable Register 1
AIN1D
AIN0D
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corresponding PIN Register bit will always read as zero when this bit is set. When an analog signal is applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be written logic one to reduce power consumption in the digital input buffer.
Quantum keycodes allow for easier customisation of your keymap than the basic ones provide, without having to define custom actions.
All keycodes within quantum are numbers between `0x0000` and `0xFFFF`. Within your `keymap.c` it may look like you have functions and other special cases, but ultimately the C preprocessor will translate those into a single 4 byte integer. QMK has reserved `0x0000` through `0x00FF` for standard keycodes. These are keycodes such as `KC_A`, `KC_1`, and `KC_LCTL`, which are basic keys defined in the USB HID specification.
On this page we have documented keycodes between `0x00FF` and `0xFFFF` which are used to implement advanced quantum features. If you define your own custom keycodes they will be put into this range as well.
This document attempts to explain how the QMK firmware works from a very high level. It assumes you understand basic programming concepts but does not (except where needed to demonstrate) assume familiarity with C. It assumes that you have a basic understanding of the following documents:
* [Introduction](getting_started_introduction.md)
* [How Keyboards Work](how_keyboards_work.md)
* [FAQ](faq.md)
## Startup
You can think of QMK as no different from any other computer program. It is started, performs its tasks, and then ends. The entry point for the program is the `main()` function, just like it is on any other C program. However, for a newcomer to QMK it can be confusing because the `main()` function appears in multiple places, and it can be hard to tell which one to look at.
The reason for this is the different platforms that QMK supports. The most common platform is `lufa`, which runs on AVR processors such at the atmega32u4. We also support `chibios` and `vusb`.
We'll focus on AVR processors for the moment, which use the `lufa` platform. You can find the `main()` function in [tmk_core/protocol/lufa/lufa.c](https://github.com/qmk/qmk_firmware/blob/master/tmk_core/protocol/lufa/lufa.c#L1129). If you browse through that function you'll find that it initializes any hardware that has been configured (including USB to the host) and then it starts the core part of the program with a [`while(1)`](https://github.com/qmk/qmk_firmware/blob/master/tmk_core/protocol/lufa/lufa.c#L1182). This is [The Main Loop](#the_main_loop).
## The Main Loop
This section of code is called "The Main Loop" because it's responsible for looping over the same set of instructions forever. This is where QMK dispatches out to the functions responsible for making the keyboard do everything it is supposed to do. At first glance it can look like a lot of functionality but most of the time the code will be disabled by `#define`'s.
```
keyboard_task();
```
This is where all the keyboard specific functionality is dispatched. The source code for `keyboard_task()` can be found in [tmk_core/common/keyboard.c](https://github.com/qmk/qmk_firmware/blob/master/tmk_core/common/keyboard.c#L154), and it is responsible for detecting changes in the matrix and turning status LED's on and off.
Within `keyboard_task()` you'll find code to handle:
* [Matrix Scanning](#matrix-scanning)
* Mouse Handling
* Serial Link(s)
* Visualizer
* Keyboard status LED's (Caps Lock, Num Lock, Scroll Lock)
#### Matrix Scanning
Matrix scanning is the core function of a keyboard firmware. It is the process of detecting which keys are currently pressed, and your keyboard runs this function many times a second. It's no exaggeration to say that 99% of your firmware's CPU time is spent on matrix scanning.
While there are different strategies for doing the actual matrix detection, they are out of scope for this document. It is sufficient to treat matrix scanning as a black box, you ask for the matrix's current state and get back a datastructure that looks like this:
```
{
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0}
}
```
That datastructure is a direct representation of the matrix for a 4 row by 5 column numpad. When a key is pressed that key's position within the matrix will be returned as `1` instead of `0`.
Matrix Scanning runs many times per second. The exact rate varies but typically it runs at least 10 times per second to avoid perceptible lag.
##### Matrix to Physical Layout Map
Once we know the state of every switch on our keyboard we have to map that to a keycode. In QMK this is done by making use of C macros to allow us to separate the definition of the physical layout from the definition of keycodes.
At the keyboard level we define a C macro (typically named `KEYMAP()`) which maps our keyboard's matrix to physical keys. Sometimes the matrix does not have a switch in every location, and we can use this macro to pre-populate those with KC_NO, making the keymap definition easier to work with. Here's an example `KEYMAP()` macro for a numpad:
```c
#define KEYMAP( \
k00, k01, k02, k03, \
k10, k11, k12, k13, \
k20, k21, k22, \
k30, k31, k32, k33, \
k40, k42 \
) { \
{ k00, k01, k02, k03, }, \
{ k10, k11, k12, k13, }, \
{ k20, k21, k22, KC_NO, }, \
{ k30, k31, k32, k33, }, \
{ k40, KC_NO, k42, KC_NO } \
}
```
Notice how the second block of our `KEYMAP()` macro matches the Matrix Scanning array above? This macro is what will map the matrix scanning array to keycodes. However, if you look at a 17 key numpad you'll notice that it has 3 places where the matrix could have a switch but doesn't, due to larger keys. We have populated those spaces with `KC_NO` so that our keymap definition doesn't have to.
You can also use this macro to handle unusual matrix layouts, for example the [Clueboard rev 2](https://github.com/qmk/qmk_firmware/blob/master/keyboards/clueboard/rev2/rev2.h). Explaining that is outside the scope of this document.
##### Keycode Assignment
At the keymap level we make use of our `KEYMAP()` macro above to map keycodes to physical locations to matrix locations. It looks like this:
Notice how all of these arguments match up with the first half of the `KEYMAP()` macro from the last section? This is how we take a keycode and map it to our Matrix Scan from earlier.
##### State Change Detection
The matrix scanning described above tells us the state of the matrix at a given moment, but your computer only wants to know about changes, it doesn't care about the current state. QMK stores the results from the last matrix scan and compares the results from this matrix to determine when a key has been pressed or released.
Let's look at an example. We'll hop into the middle of a keyboard scanning loop to find that our previous scan looks like this:
```
{
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0}
}
```
And when our current scan completes it will look like this:
```
{
{1,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0}
}
```
Comparing against our keymap we can see that the pressed key is KC_NLCK. From here we dispatch to the `process_record` set of functions.
<!-- FIXME: Magic happens between here and process_record -->
##### Process Record
The `process_record()` function itself is deceptively simple, but hidden within is a gateway to overriding functionality at various levels of QMK. The chain of events is described below, using cluecard whenever we need to look at the keyboard/keymap level functions.
* [Identify and process quantum specific keycodes](https://github.com/qmk/qmk_firmware/blob/master/quantum/quantum.c#L211)
At any step during this chain of events a function (such as `process_record_kb()`) can `return false` to halt all further processing.
<!--
#### Mouse Handling
FIXME: This needs to be written
#### Serial Link(s)
FIXME: This needs to be written
#### Visualizer
FIXME: This needs to be written
#### Keyboard state LED's (Caps Lock, Num Lock, Scroll Lock)
FIXME: This needs to be written
-->
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.